PRIVATE CARS

XANTIA-XM-SYNERGIE A A A responsibility to the exclusion of that of the manufacturer".

"The technical information appearing in this brochure is subject to updating as the characteristics of each model in the range evolve. Motor vehicle repairers are invited to contact the CITROËN network periodically for further information and to obtain any possible updates".

CAR 050008
Book 2

PRESENTATION

THIS HANDBOOK summarises the characteristics, adjustments, checks and special features of CITROEN vehicles, not including COMMERCIAL vehicles for which there exists a separate handbook.

The handbook is divided into the following groups representing the main functions :
GENERAL - ENGINE - INJECTION - IGNITION - CLUTCH, GEARBOX, DRIVESHAFTS - AXLES, SUSPENSION, STEERING - BRAKES HYDRAULICS - ELECTRICAL - AIR CONDITIONING.

In each section, the vehicles are dealt with in the following order : XANTIA-XM-SYNERGIE and all models where applicable
The information given in this handbook is based on vehicles marketed in EUROPE.

IMPORTANT

If you find that this handbook does not always meet your requirements, we invite you to send us your suggestions which we will take into account when preparing future publications. For example :

> - INSUFFICIENT INFORMATION
> - SUPERFLUOUS INFORMATION
> - NEED FOR MORE DETAILS

Please send your comments and suggestions to :
CITROEN U.K. Ltd.
221, Bath Road,
SLOUGH,
SL1 4BA.
U.K.

INDEX							
GENERAL		HDi safety requirements		143-146	XANTIA	Parking brake Bleed of brakes	240-241
Identification of vehicles	1-8	Checks: HDi fuel circuit		147-148			242
	9-13	Checks: HDi air circuit		149	XM	Parking brake	244
	14-15	Checks: Turbo pressure		150-151		Bleed of brakes	245
Capacities	17-18	Checks: HDi exhaust gas recycling		152	SYNERGIE	Parking brake	249
	19	DELPHI checking, timing 153-156			SUSPENSION		
	20	BOSCH checking, timing		157-163	De-pressurising		250-260
Lubricants 21-34		IGNITION			HYDRAULICS		
ENGINE		Sparking plugs 164			Pneumatic units	XANTIA	261-265
Specifications	36-38	CLUTCH-GEARBOX-DRIVESHAFTS				XM	266-269
Cyl. head marking and tightening	51-61	Speedometer		165	ELECTRICITY		
Auxiliary equipment drive belt	62-78	Clutch adjustments		169-176	Starter motors		270-272
Checking and setting valve timing	83-84			- 214	Alternators		273-279
Valve clearances	121			214	Charging ci		280
Oil pressure 122		AXLES-SUSPENSION-STEERING			Preheater plugs		281
Oil filter	125	Axle geometry	XANTIA	215-223	AIR CONDITIONING		
INJECTION			XM	224-230	R 134 a quantities		282
Idling, anti-pollution 127			SYNERGIE	231-236	Checking temperatures		283-288
Petrol injection	128-129	BRAKES					289-290
Anti-pollution technical checks	130	Brake specifications	XANTIA	237-238	Checking pressures		-293-297
Emission standards	131-137		XM	243	Aircon system	XM	298-301
LPG safety requirements	138-142		SYNERGIE	246		SYNERGIE	302-303

PRESENTATION

THIS HANDBOOK summarises the characteristics, adjustments, checks and special features of CITROEN vehicles, not including COMMERCIAL vehicles for which there exists a separate handbook.

The handbook is divided into the following groups representing the main functions :
GENERAL - ENGINE - INJECTION - IGNITION - CLUTCH, GEARBOX, DRIVESHAFTS - AXLES, SUSPENSION, STEERING - BRAKES HYDRAULICS - ELECTRICAL - AIR CONDITIONING.

In each section, the vehicles are dealt with in the following order : XANTIA-XM-SYNERGIE and all models where applicable
The information given in this handbook is based on vehicles marketed in EUROPE.

IMPORTANT

If you find that this handbook does not always meet your requirements, we invite you to send us your suggestions which we will take into account when preparing future publications. For example :

> - INSUFFICIENT INFORMATION
> - SUPERFLUOUS INFORMATION
> - NEED FOR MORE DETAILS

Please send your comments and suggestions to :
CITROEN U.K. Ltd.
221, Bath Road,
SLOUGH,
SL1 4BA.
U.K.

INDEX							
GENERAL		HDi safety requirements		143-146	XANTIA	Parking brake Bleed of brakes	240-241
Identification of vehicles	1-8	Checks: HDi fuel circuit		147-148			242
	9-13	Checks: HDi air circuit		149	XM	Parking brake	244
	14-15	Checks: Turbo pressure		150-151		Bleed of brakes	245
Capacities	17-18	Checks: HDi exhaust gas recycling		152	SYNERGIE	Parking brake	249
	19	DELPHI checking, timing 153-156			SUSPENSION		
	20	BOSCH checking, timing		157-163	De-pressurising		250-260
Lubricants 21-34		IGNITION			HYDRAULICS		
ENGINE		Sparking plugs 164			Pneumatic units	XANTIA	261-265
Specifications	36-38	CLUTCH-GEARBOX-DRIVESHAFTS				XM	266-269
Cyl. head marking and tightening	51-61	Speedometer		165	ELECTRICITY		
Auxiliary equipment drive belt	62-78	Clutch adjustments		169-176	Starter motors		270-272
Checking and setting valve timing	83-84			- 214	Alternators		273-279
Valve clearances	121			214	Charging ci		280
Oil pressure 122		AXLES-SUSPENSION-STEERING			Preheater plugs		281
Oil filter	125	Axle geometry	XANTIA	215-223	AIR CONDITIONING		
INJECTION			XM	224-230	R 134 a quantities		282
Idling, anti-pollution 127			SYNERGIE	231-236	Checking temperatures		283-288
Petrol injection	128-129	BRAKES					289-290
Anti-pollution technical checks	130	Brake specifications	XANTIA	237-238	Checking pressures		-293-297
Emission standards	131-137		XM	243	Aircon system	XM	298-301
LPG safety requirements	138-142		SYNERGIE	246		SYNERGIE	302-303

XANTIA - All Types	IDENTIFICATION OF VEHICLES					
	PETROL SALOON					
	1.6 i	1.8 i	1.8 i 16 V			
			Auto.		Auto.	
	sX	sX	SX			
Emission standard	L3				L4	
Type code	X1 BFZF	X1 BFXF	X1 LFYM	X1 LFYF	X1 LFYN	X1 LFYB
Engine type	BFZ	BFX				
Cubic capacity (cc)	1580			1761		
Fiscal rating (hp)						
Gearbox type			AL4	BE3/5	AL4	BE3/5
Gearbox ident. plate	20 TE 00	20 TE 35	20 TP 52	20 TE 35 (*) $^{\text {(}}$	20 TP 52	20 TE 36
${ }^{(*)}$) Long gearbox .						

XANTIA - All Types	IDENTIFICATION OF VEHICLES				
	DIESEL SALOON				
	1.9 D	2.0 HDi (1)			
	Auto.		SX - SX Aircon Pack Exclusive Activa		SX Activa
	SX SX Aircon Pack	SX SX Aircon Pack		SX Exclusive	
Emission standard	L3	L3		L4	
Type code	X1 DHXM	X1 RFYF	X1 RHZF	X1 RHZB	X7 RHZB
Engine type	DHX	RHY	RHZ		
Cubic capacity (cc)	1905	1997			
Fiscal rating (hp)	7	6			
Gearbox type	AL4	BE3/5	ML/5		
Gearbox ident. plate	20 TP 50	20 TE 40	20 LE 84		

(1) $\mathbf{H D i}=$ High pressure Diesel injection

[^0]

IDENTIFICATION OF VEHICLES				XANTIA - All Types
	DIESEL ESTATE			
	1.9 TD		2.0 HDi (*)	
	Auto.			
	SX SX Aircon Pack	SX SX Aircon Pack	SX - SX Aircon Pack Exclusive	SX Exclusive
Emission standard	L3	L3		
Type code	X2 DHXM	X2 RHYF	X2 RHZF	X2 RHZB
Engine type	DHX	RHY		
Cubic capacity (cc)	1905		1997	
Fiscal rating (hp)	7			
Gearbox type	AL4	BE3/5		
Gearbox ident. plate	20 TP 50	20 TE 40		L 84

(1) $\mathbf{H D i}=$ High pressure Diesel injection

XANTIA - All Types	IDENTIFICATION OF VEHICLES					
	COMMERCIAL VERSIONS ALL TYPES			DUAL FUEL PETROL/LPG (1)		
	Diesel			Petrol		
	Saloon		Estate	Saloon		Estate
	2.0HDi (2) SX Ambulance			SX	$1.8 \mathrm{i} 16 \mathrm{~V}$	Pack
Emission standard	L3			L3		
Type code	X1 RHYF	X1 RHZF	X2 RHYF/T (3)	X1 LFYC/GPL	X1 LFYC/GPL	X2 LFYC/GPL
Engine type	RHY	RHZ	RHY		LFY/GPL	
Cubic capacity (cc)	1997			1761		
Fiscal rating (hp)	6				7	
Gearbox type	BE3/5	ML/5	BE3/5	BE3/5		
Gearbox ident. plate	20 TE 40	20 LE 84	20 TE 40	20 TE 36	20 TE 35	
(1) = Liquid Petroleum Gas. (2) $\mathrm{HDi}=$ High pressure Diesel injection. (3) $/ \mathrm{T}=$ Can be converted.						

IDENTIFICATION OF VEHICLES				XM Diesel
	DIESEL SALOON			
	2.1 TD			2.5 TD
	Auto.			
	SX			SX - Exclusive
Emission standard	L3		L4	L3
Type code	Y4-GZ	Y4-RN	Y4-WE	Y4-NZ
Engine type	P8C			THY
Cubic capacity (cc)	2088			2446
Fiscal rating (hp)	7	8	7	9
Gearbox type	ME/5	4 HP 18	ME/5	MG/5
Gearbox ident. plate	20 GM 31	20 GZ 5D	20 GM 31	20 KM 70

IDENTIFICATION OF VEHICLES					XM - All Types
	DIESEL ESTATE				Commercial Estate
				2.5 TD	2.1 TD
			SX	$\begin{gathered} \text { SX } \\ \text { Commerce } \end{gathered}$	SX Ambulance
Emission standard	L3		L4	L3	
Type code	Y4-MZ	Y4-CW	Y4-WF	Y4-RM	Y4-GZ
Engine type	P8C			THY	P8C
Cubic capacity (cc)	2088			2446	2088
Fiscal rating (hp)	7	8	7	9	7
Gearbox type	ME/5	4 HP 18	ME/5	MG/5	ME/5
Gearbox ident. plate	20 GM 31	20 GZ 5D	20 GM 31	20 KM 70	20 GM 31

(1) Manufacturer's cold stamp
(2) R.P. organisation No.
(3) Paint code
(4) 01/02/99 \rightarrow Label:

- Tyre pressures.
- R.P. Organisation No.
- Paint code.
(5) Gearbox ident.
(6) Engine plate
(7) Manufacturer's plate

IDENTIFICATION OF VEHICLES					SYNERGIE - All Types
	PETROL		DIESEL		
	2.0i 16 V		2.0 HDi		2.016 V HDi
		Auto.			
	$x-s x$ Exclusive		X - SX	X Taxi-sX Exclusive	
Emission standard	IF L5 (*)		L3		L4
Type code	AF RFNC/IF	AF RFNF/IF	AF RHZA/T	AF RHZA	AF RHWB
Engine type	RFN		RHZ		RHW
Cubic capacity (cc)	1997				
Fiscal rating (hp)	9	10	6		
Gearbox type	BE4/5	AL4	ML5		
Gearbox ident. plate	DL26- DL27	20 TP 31	$20 \text { LE } 91$		

ALL TYPES

CAPACITIES

Draining method.

The oil capacities are defined according to the following methods.

1) - Vehicle on level surface (in high position, if equipped with hydropneumatic suspension).
2) - Engine warm (oil temperature $80^{\circ} \mathrm{C}$).
3) - Draining of the oil sump + removal of the cartridge (duration of draining + dripping = $\mathbf{1 5} \mathbf{~ m m}$).
4) - Refit plug + cartridge.
5) - Engine filling.
6) - Engine starting (allowing the cartridge to be filled).
7) - Engine stopped (stationary for 5 mm).

SYNERGIE - All Types

CAPACITIES (in litres)

ALL TYPES
 LUBRICANTS - TOTAL recommended oils

Selection of engine oil grades recommended for climatic conditions in countries of distribution

ACEA Norms

The first letter corresponds to the type of engine concerned :
A : petrol and dual fuel petrol / LPG engines.
B : diesel engines.
The figure following the first letter corresponds to the type of oil.
1 : highly fluid oils, for reducing friction and lowering fuel onsumption.
3 : high performance oils.
The number after that (96 or 98) corresponds to the year of creation of the norm.

NOTE : From 01/03/2000, all engine oils must comply with ACEA98 norms.

Example :

ACEA A1-98 / B1-98 : Blended oils for all engines, permetting fuel economy (complying with ACEA 98 norms).

API Norms

The first letter corresponds to the type of fuel used by the engine : S : petrol and dual fuel petrol / LPG engines.
C: diesel engines.
The second letter corresponds to the degree of evolution, in ascending order. Example : The norm SJ is more severe than the norm SH and corresponds to a higher level of performance.
The adding of the letters EC indicates that the engine oil concerned is an oil which permits fuel economy.
EC : Energy Conserving, reduction in fuel consumption.
Examples:
API SJ / CF : Blended oils for diesel and dual fuel petrol / LPG engines
API CF / EC : Oils specifically for diesel engines, permitting fuel economy.
API SJ / CF / EC : Blended oils for all engines, permetting fuel economy.

Recommendations.
Denominations of TOTAL oils, according to country of marketing :

TOTAL ACTIVA	(France only).
TOTAL QUARTZ	(outside France).

IMPERATIVE : From 1999 model year, to preserve engine performance, all engines fitted in CITROEN vehicles must be lubricated with high quality oils (synthetic or semi-synthetic)

These oils must comply with the following norms :
Petrol and dual fuel petrol / LPG engines: ACEA A3-98 and API SJ.
Diesel engines: ACEA B3-98 and API CF.

Summary

Model year	Types of engine	ACEA norms	API norms
2001 model year	Petrol and dual fuel petrol / LPG engines	A3-98 or A1-98 (*)	SJ or SJ / EC (*)
	Diesel engines	B3-98 or B1-98 (*)	CF or CF / EC (*)

Engine oil norms to be respected in 2001 model year.

LUBRICANTS－TOTAL recommended oils			ALL TYPES
FRANCE			
Metropolitan FRANCE	Blended oils for all engines		
	TOTAL ACTIVRAC		S．A．E ：10W－40 Norms
	TOTAL ACTIVA		TOTAL ACTIVA DIESEL
	Blended oils for all engines	Oils specifically for petrol and dual－fuel petrol／LPG engines	Oils specifically for diesel engines
Metropolitan FRANCE	$\begin{gathered} 900 \text { 5W-40 } \\ 90005 \mathrm{~W}-30 \text { (*) } \end{gathered}$	$700010 \mathrm{~W}-40$	$\begin{gathered} \hline 700010 \mathrm{~W}-40 \\ 90005 \mathrm{~W}-40 \\ \hline \end{gathered}$
New Caledonia Guadeloupe Saint－Martin La Réunion Martinique Guyana Tahiti Mauritius Mayotte	9000 5W－40	7000 15W－50	7000 15W－50
$(*)=$ Blended oils for all engines，permitting fuel economy．			

ALL TYPES	LUBRICANTS - TOTAL recommended oils		
EUROPE			
$\mathbf{(*)}^{*}$ = Blended oils for all engines, permitting fuel economy	TOTA	QUARTZ	TOTAL QUARTZ DIESEL
	Blended oils for all engines	Oils specifically for petrol and dual-fuel petrol / LPG engines	Oils specifically for diesel engines
Germany	$\begin{aligned} & 9000 \text { 5W-40 } \\ & 9000 \text { 5W-30 (*) } \end{aligned}$	$\begin{aligned} & 700010 \mathrm{~W}-40 \\ & 9000 \text { 0W-40 } \\ & \hline \end{aligned}$	7000 10W-40
Austria		7000 10W-40	
Belgium		$\begin{aligned} & \hline 7000 \text { 10W-40 } \\ & 9000 \text { 0W-40 } \end{aligned}$	
Bulgaria		7000 10W-40	
Cyprus		7000 15W-50	$\begin{aligned} & 7000 \text { 10W-40 } \\ & 7000 \text { 15W-50 } \end{aligned}$
Croatia		7000 10W-40	
Denmark		$\begin{aligned} & \hline 7000 \text { 10W-40 } \\ & 9000 \text { 0W-40 } \\ & \hline \end{aligned}$	7000 10W-40
Spain		$\begin{aligned} & 7000 \text { 10W-40 } \\ & 7000 \text { 15W-50 } \end{aligned}$	$\begin{aligned} & \hline 7000 \text { 10W-40 } \\ & 7000 \text { 15W-50 } \\ & \hline \end{aligned}$
Finland		$\begin{aligned} & \hline 7000 \text { 10W-40 } \\ & 9000 \text { 0W-40 } \\ & \hline \end{aligned}$	7000 10W-40
Great Britain		7000 10W-40	

LUBRICANTS - TOTAL recommended oils			ALL TYPES
EUROPE (continued)			
(*) = Blended oils for all engines, permitting fuel economy	TOTAL QUARTZ		TOTAL QUARTZ DIESEL
	Blended oils for all engines	Oils specifically for petrol and dual-fuel petrol / LPG engines	Oils specifically for diesel engines
Greece	$\begin{aligned} & 9000 \text { 5W-40 } \\ & 9000 \text { 5W-30 (*) } \end{aligned}$	$\begin{aligned} & 7000 \text { 10W-40 } \\ & 7000 \text { 15W-50 } \end{aligned}$	$\begin{aligned} & 7000 \text { 10W-40 } \\ & 7000 \text { 15W-50 } \end{aligned}$
Holland		7000 10W-40	7000 10W-40
Hungary		9000 0W-40	
Italy		7000 10W-40	
Latvia		7000 10W-40	
Lithuania		9000 0W-40	
Macedonia		7000 10W-40	
Malta		$\begin{aligned} & \hline 7000 \text { 10W-40 } \\ & 7000 \text { 15W-50 } \\ & \hline \end{aligned}$	$\begin{aligned} & 7000 \text { 10W-40 } \\ & 7000 \text { 15W-50 } \\ & \hline \end{aligned}$
Norway		$\begin{gathered} \hline 700010 \mathrm{~W}-40 \\ 9000 \text { 0W-40 } \\ \hline \end{gathered}$	7000 10W-40
Poland		7000 10W-40	
Portugal			
Slovak Republic			

ALL TYPES	LUBRICANTS - TOTAL recommended oils		
EUROPE (continued)			
$\left(^{*}\right)=$ Blended oils for all engines, permitting fuel economy	TOTAL QUARTZ		TOTAL QUARTZ DIESEL
	Blended oils for all engines	Oils specifically for petrol and dual-fuel petrol / LPG engines	Oils specifically for diesel engines
Czech Republic		$\begin{gathered} 7000 \text { 10W-40 } \\ 9000 \text { 0W-40 } \end{gathered}$	7000 10W-40
Romania		$\begin{aligned} & \hline 7000 \text { 10W-40 } \\ & 7000 \text { 15W-50 } \\ & \hline \end{aligned}$	$\begin{aligned} & 7000 \text { 10W-40 } \\ & 7000 \text { 15W-50 } \\ & \hline \end{aligned}$
Russia		$\begin{gathered} 7000 \text { 10W-40 } \\ 9000 \text { 0W-40 } \\ \hline \end{gathered}$	
Slovenia	9000 5W-40	7000 10W-40	7000 10W-40
Sweden	9000 5W-30 (*)	$\begin{gathered} 700010 \mathrm{~W}-40 \\ 9000 \text { OW-40 } \\ \hline \end{gathered}$	
Switzerland		7000 10W-40	
Turkey		$\begin{gathered} 7000 \text { 10W-40 } \\ 700015 \mathrm{~W}-50 \\ 9000 \text { 0W-40 } \end{gathered}$	$\begin{aligned} & 7000 \text { 10W-40 } \\ & 7000 \text { 15W-50 } \end{aligned}$
Ukraine		$\begin{gathered} 7000 \text { 10W-40 } \\ 9000 \text { 0W-40 } \end{gathered}$	7000 10W-40

LUBRICANTS－TOTAL recommended oils				ALL TYPES
		TOTAL QUARTZ		TOTAL QUARTZ DIESEL
		Blended oils for all engines	Oils specifically for petrol and dual－fuel petrol／LPG engines	Oils specifically for diesel engines
Australia New Zealand	OCEANIA	9000 5W－40	7000 10W－40	7000 10W－40
Angola－Ivory Coast Egypt－Ecuador－Gabon Madagascar－Morocco Dominican Republic Senegal－Tunisia	AFRICA	9000 5W－40	7000 15W－50	7000 15W－50
Argentina－Brazil－Chile Colombia－Cuba Guatemala－Paraguay Peru－El Salvador Uruguay	SOUTH AMERICA	9000 5W－40	7000 15W－50	7000 15W－50

LUBRICANTS - TOTAL recommended oils				ALL TYPES
		TOTAL QUARTZ		TOTAL QUARTZ DIESEL
		Blended oils for all engines	Oils specifically for petrol and dual-fuel petrol / LPG engines	Oils specifically for diesel engines
Saudi Arabia Bahrain Dubai United Arab Emirates Israel Jordan Kuwaït Lebanon Qatar Yemen	MIDDLE EAST	9000 5W-40	7000 15W-50	7000 15W-50

ALL TYPES LUBRICANTS - TOTAL recommended oils		
Gearbox oils		
Manual gearbox	Europe Overseas France Asia	TOTAL TRANSMISSION (new formula) Norms S.A.E 75W-80
Automatic gearbox MB3		TOTAL FLUIDE ATX ou TOTAL FLUIDE AT 42. Special oil distributed by CITROEN (Part No. : 9730 94).
Automatic gearbox 4 HP 14 et 4 HP 18	All countries	TOTAL FLUIDE AT 42 ou Special oil distributed by CITROEN (Part No. : 9730 94).
Automatic gearbox 4 HP 20 et AL4		Special oil distributed by CITROEN (Part No. : 9736 22).
Transfer box and differential		TOTAL TRANSMISSION X 4
C MATIC gearbox		TOTAL FLUIDE T
Oils for power-assisted steering		
Power-assisted steering	All countries	TOTAL FLUIDE ATX

LUBRICANTS - TOTAL recommended oils				ALL TYPES
Engine coolant				
All countries	CITROEN Fluid Protection : $-35^{\circ} \mathrm{C}$	Packs	CITROEN Reference	
			GLYSANTIN G 33	REVCOGEL 2000
		2 litres	997970	997972
		5 litres	997971	997973
		20 litres	997976	997974
		210 litres	997977	997975
Synthetic brake fluid				
All countries	CITROEN Fluid	Packs	CITROEN Reference	
		0.5 litre	997905	
		1 litre	997906	
		5 litres	997907	
CITROEN hydraulic circuit fluid				
All countries	Mineral fluid for hydraulic circuit - green colour			
	TOTAL LHM PLUS	Packs	CITROEN Reference	
	Norms ISO 7308-7309	1 litre	ZCP 830095	
	Hydraulic circuit rinsing fluid - green colour			
	TOTAL HYDRAURINCAGE			

ALL TYPES	LUBRICANTS - TOTAL recommended oils			
Wash / wipe fluid				
CITROEN Reference				
All countries	Concentrate : 250 ml	998033	ZC 9875953 U	998056
	Liquid ready to use : 1 litre	998006	ZC 9875784 U	
	Liquid ready to use : 5 litres	998005	ZC 9885077 U	ZC 9875279 U
Grease				
All countries			Norms NLGI (1)	
	TOTAL MULTIS EP2 TOTAL MULTIS COMPLEX EP2 TOTAL MULTIS N4128		$\begin{aligned} & 2 \\ & 2 \\ & 1 \end{aligned}$	
	TOTAL SMALL MECHANISMS			
(1) $\mathrm{NLGI}=$ National Lubrificating Grease Institute.				

I - Oil consumption depends on :

- the engine type.
- how run-in or worn it is.
- the type of oil used.
- the driving conditions.

II - An engine can be considered RUN-IN after:

- 3,000 miles $(5,000 \mathrm{~km})$ for a PETROL engine.
- $\mathbf{6 , 0 0 0}$ miles $(10,000 \mathrm{~km}$) for a DIESEL engine.

III - MAXIMUM PERMISSIBLE oil consumption for a RUN-IN engine.

- $\mathbf{0 . 5}$ litres per $\mathbf{6 0 0}$ miles ($1,000 \mathrm{~km}$) for a PETROL engine
- $\mathbf{1}$ litre per $\mathbf{6 0 0}$ miles ($1,000 \mathrm{~km}$) for a DIESEL engine.

DO NOT WORK BELOW THESE VALUES.

IV - OIL LEVEL : The level should NEVER be above the MAX. mark on the dipstick after changing or topping up the oil.

- This excess oil will be used up rapidly.
- It will reduce the engine output and adversely affect the operation of the air circuits and gas recycling.

ALL TYPES	ENGINE SPECIFICATIONS				
	Engines : BFZ BFX LFX LFY				
	Petrol				
	All Types				
	$1.6 \mathbf{i}$	1.8 i		1.8 i 16 V	
					Dual fuel
Engine type	BFZ	BFX	LFX	LFY	LFY/GPL
Cubic capacity (cc)	1580	1761			
Bore / Stroke	83/73	83/81.4			
Compression ratio	9.25/1	9.5/1		10.4/1	
Power ISO or EEC KW-rpm	65-6000	66-5000		81-5500	79-5500
Power DIN (HP-rpm)	89-6000	90-5000		112-5500	109-5500
Torque ISO or EEC (m.daN-rpm)	13-2600	14.7-2600		15.5-4250	
Torque DIN (mkg-rpm)	13.5-2600	$15.3-2600$		$16.1-4250$	
Max. speed (rpm)	6800	6300		6400	

ENGINE SPECIFICATIONS				ALL TYPES
	Engines : RGX RFN RFV XFZ			
	Petrol			
	2.01 TURBO CT			3.0i V6
Engine type	RGX	RFN	RFV	XFZ
Cubic capacity (cc)	1998	1997	1998	2946
Bore / Stroke	86/86	85/88	86/86	87/82.6
Compression ratio	7.9/1	10.8/1	10.4/1	10.5/1
Power ISO or EEC KW-rpm	108-5300	99-6000	97.4-5500	140-5750
Power DIN (HP-rpm)	150-5300	136-6000	135-5500	194-5750
Torque ISO or EEC (m.daN-rpm)	23.5-2500	19-4600	18-4200	26.7-4000
Torque DIN (mkg-rpm)	24.5-2500	19.8-4600	18.7-4200	27.7-4000
Max. speed (rpm)	6300		6800	6520

	Engines : DHX - RHZ - RHY - RFW - P8C - THY					
	Diesel					
	All Types					
	1.9 TD			2.0 HDi 16V	2.1 TD	2.5 TD
Engine type	DHX	RHZ	RHY	RHW	P8C	THY
Cubic capacity (cc)	1905	1997			2088	2445
Bore / Stroke	83/88	85/88		85/88	95/92	92/92
Compression ratio	21.8/1	17.6/1		18/1	21.5/1	22/1
Power ISO or EEC KW-rpm	66-4000	80-4000	66-4000	80-4000	80-4300	94.5-4300
Power DIN (HP-rpm)	90-4000	110-4000	90-4000	110-4000	110-4300	130-4300
Torque ISO or EEC (m.daN-rpm)	19.6-2250	25-1750	20.5-1750	27-1750	25-2000	28.5-2000
Torque DIN (mkg-rpm)	20.5-2250	26-1750	21.3-1750	-1750	26-2000	30-2000
Max. speed (rpm)	4500	5300			4300	5100

COMPRESSION RATIO - DIESEL ENGINES				ALL TYPES
ENGINE	COMPRESSION RATIO	MINIMUM VALUE $\text { (- } 20 \% \text {) }$	MAX. SPA BETWEEN CY	ING INDERS
in Bars				
XUD 7 / 9	25 to 30	20	5	
XUD 11	19 to 21	15		
DW10	30 ± 5			
DK5	25 to 30	20		

XANTIA - XM	SPECIAL FEATURES - TIGHTENING TORQUES (m.daN)					
Engines : BFZ - BFX - LFX - LFY - RFV - RGX						
	CYLINDER HEAD (mm)					
Engine type	BFZ	BFX	LFX	LFY	RFV	RGX
Maximum permissible bow	0.05					
Gasket surface regrinding	- 0.20					
	TIGHTENING TORQUES (m.daN)					
Crankshaft bearing screws : - Pre-tightening - Tightening - Angular tightening	5.5 ± 0.5					7 ± 0.7
Connecting rod screws - Pre-tightening - Tightening - Angular tightening	$\begin{gathered} 4 \pm 0.4 \\ 2 \pm 0.2 \\ 70^{\circ} \pm 7^{\circ} \end{gathered}$					
Flywheel screw	5					
Crankshaft pulley screw	12					
Pulley screw at end of camshaft	5.5 ± 0.5			7.5 ± 0.7	5.5 ± 0.5	
WARNING : After removing the crankshaft pulley, carry out the following operations : - Clean the thread (Tap 14X150) Fit a NEW washer - Fit a NEW screw. - Tighten (see table above)						

SPECIAL FEATURES - TIGHTENING TORQUES (m.daN)				SYNERGIE
	Engine : RFN			
Maximum permissible bow	0.05			
Gasket surface regrinding	-0.20			
Crankshaft				
Bearing cap screws. - Pre-tightening - Angular tightening	$\begin{gathered} 2 \pm 0.1 \\ 60^{\circ} \pm 6^{\circ} \end{gathered}$	Camshaft pulley hubs		7.5 ± 0.7
Con-rod cap screws. - Tightening - Untightening - Tightening - Angular tightening	$\begin{gathered} 2.3 \pm 0.2 \\ 46^{\circ}+2^{\circ}-4^{\circ} \end{gathered}$	Engine flywheel - Pre-tightening - Tightening		$\begin{gathered} 2 \pm 0.2 \\ 21^{\circ} \pm 3^{\circ} \end{gathered}$
Con-rod nuts. - Pre-tightening - Angular tightening		Clutch plate		2 ± 0.2
Accessories drive pulley - Tightening - Angular tightening	2.1 ± 0.1			
Accessories drive pulley hub - Pre-tightening - Angular tightening (Sintered washer) - Angular tightening (Steel washer)	$\begin{gathered} 4 \pm 0.4 \\ 40^{\circ} \pm 4^{\circ} \\ 53^{\circ} \pm 5^{\circ} \end{gathered}$			

SPECIAL FEATURES - TIGHTENING TORQUES (m.daN)

SPECIAL FEATURES - TIGHTENING TORQUES (m.daN) \quad Engine : XFZ

DIESEL - All Types	SPECIAL FEATURES - TIGHTENING TORQUES (m.daN)					
Engines : DHX - P8C - RHY - RHZ - RHW - THY						
	CYLINDER HEAD (mm)					
Engine type	DHX	P8C	RHY	RHZ	RHW	THY
Maximum permissible bow	0.07	0.05		0.03		0.05
Gasket surface regrinding	-0.20			- 0.40		
	TIGHTENING TORQUES (m.daN)					
Crankshaft bearing screws : - Pre-tightening - Tightening - Angular tightening	$\begin{gathered} 1.5 \pm 0.1 \\ 60^{\circ} \pm 6^{\circ} \\ \hline \end{gathered}$		$\begin{aligned} 2.5 & \pm 0.2 \\ & - \\ 60 & \pm 6^{\circ} \end{aligned}$			$\begin{gathered} 2 \pm 0.2 \\ 60^{\circ} \pm 6^{\circ} \end{gathered}$
Connecting rod screws : - Pre-tightening - Angular tightening	$\begin{gathered} 2 \pm 0.2 \\ 70^{\circ} \pm 7^{\circ} \end{gathered}$					$\begin{gathered} 2 \pm 0.2 \\ 65^{\circ} \pm 6^{\circ} \end{gathered}$
Flywheel screw	5 ± 0.5					
Crankshaft pulley screw : - Pre-tightening - Angular tightening	$\begin{gathered} 4 \pm 0.4 \\ 51^{\circ} \pm 5^{\circ} \end{gathered}$	$\begin{gathered} 7 \pm 0.7 \\ 60^{\circ} \pm 6^{\circ} \end{gathered}$		$\begin{gathered} 4 \pm 0.4 \\ 51^{\circ} \pm 5^{\circ} \end{gathered}$		$\begin{gathered} 7 \pm 0.7 \\ 51^{\circ} \pm 5^{\circ} \end{gathered}$
Pulley screw at end of camshaft	4.5 ± 0.4	4.3 ± 0.4				
WARNING : After removing the crankshaft pulley, carry out the following operations : (Except for THY engines). - Clean the thread (Tap 14X150) - Fit a NEW washer -Fit a NEW screw. - Tighten (see table above)						

CYLINDER HEAD				SYNERGIE
Engine : RFN				
Identification of the cylinder head gasket				
	Nominal dimension			
Marking zone "d"	4-5			
Marking zone "e"		R1	R2	
Gasket thickness (mm)	0.8	1.1	1.4	
Supplier	MEILLOR			
Multilayer metallic gasket				
				B1DP183D

Cylinder head tightening (m.daN)

Supplier	Thickness (mm)	Ident. marks (1) and (2)
ERLING	1.45 ± 0.04	Centre tab

XANTIA - SYNERGIE
Engine : RHZ - RHY

Engine type		Piston stand- proud (mm)	Thickness (mm)
No. of notches at A			
	0.47 to 0.605	1.30 ± 0.06	1
	0.605 to 0.655	1.35 ± 0.06	2
	0.655 to 0.705	1.40 ± 0.06	3
	0.705 to 0.755	1.45 ± 0.06	4
	0.755 to 0.83	1.50 ± 0.06	5

Engines : DHX - RHZ - RHY - P8C
Cylinder head tightening (m.daN)

AUXILIARY EQUIPMENT DRIVE BELT	ALL TYPES
Engines : All Types Petrol and Diesel	
- Belt tension measuring instrument : 4122-T. (C.TRONIC 105.5) - WARNING : If using tool 4099-T (C.TRONIC 105) refer to the correspondence table on page 62. ESSENTIAL - Before refitting the auxiliary equipment drive belt, check that : 1) The roller(s) rotate freely (no play or stiffness) 2) The belt is correctly engaged in the grooves of the various pulleys.	

XANTIA - XM
 AUXILIARY EQUIPMENT DRIVE BELT

Engines : BFZ - LFX - LFY - RFV - RGX

	Without air conditioning		
	[1] Belt tension measuring instrument : 4122-T - (3) and (5) Roller support fixing screws. - (6) Tensioning screw. - Tighten the belt, by loosening the screw (6) to : In SEEM units		
	BFZ-LFX	LFY	RFV-RGX
	100 ± 10	120 ± 10	100 ± 10

- Tighten the screws (3) and (5).
- Rotate the crankshaft by 4 turns (direction of rotation).
- Loosen the screws (3) and (5).
- Tension the belt, by slackening the screws (6) to : In SEEM units.

BFZ-LFX	LFY	RFV-RGX
115 ± 5	120 ± 10	105 ± 10

- Tighten the screws (3) and (5) to 2 m.daN.

AUXILIARY EQUIPMENT DRIVE BELT		XANTIA - XM
Engines : BFZ - LFX - LFY - RFV - RGX (Continued)		
	- Loosen : - The screws (4) of the tensioner roller ($\mathbf{1 3} \mathbf{~ m m}$ angle spanner). - The screw (3). - Tension the belt using the screw (3) to obtain : - New belt : 120 SEEM units. - Reused belt : 90 SEEM units. - Tighten the screws (4) to $2 \mathbf{m} . d a N$. - Rotate the crankshaft by 4 turns (direction of rotation). - Adjust the belt tension (if necessary).	
B1EP05FC		

AUXILIARY EQUIPMENT DRIVE BELT

AUXILIARY EQUIPMENT DRIVE BELT		XANTIA - XM	
Engines : DHX - P8C			
1-2. ${ }^{1}$	Without air conditioning		
	[2] Belt tension measuring instrument - Tighten the belt, by loosening the screw (4) to obtain: $-\mathbf{1 1 5} \pm \mathbf{1 0}$ SEEM units. - Tighten the screws (1) and (3). - Rotate the crankshaft by 4 turns (Direction of rotation).		
	- Loosen the screws (1) and (3). - Tighten the belt to : - $115 \pm \mathbf{1 0}$ SEEM units (if necessary). - Tighten the screws (1) and (3) to 2 m.daN.	B1BP10GC	B1BP10HC

XANTIA - SYNERGIE

AUXILIARY EQUIPMENT DRIVE BELT

Engine : RHY - RHZ

Without air conditioning

Tools

[1] Belt tension adjusting square
(-). 0188 J 2
[2] $\varnothing 4 \mathrm{~mm}$ peg
[3] Ø 2 mm peg
: (-).0188.Q1
[4] Dynamic tensioner compression lever
: (-).0188.Q2
(-).0188.Z

Removal.
Re-use of belt
WARNING : Mark the direction the belt was fiited in case of re-use of the same belt.

- Compress the tensioner roller (2) by action at «a» (in anti-clockwise direction), tool [4]. - Keep the tensioner roller (2) compressed and remove the belt.

No re-use of belt.

- Compress the tensioner roller (2) by action at «a» (in anti-clockwise direction), tool [4]. - Peg using tool [2], at "b".
- Hold the tensioner roller (2) compress and remove the belt.
- Loosen the screw (1).

XANTIA - SYNERGIE

AUXILIARY EQUIPMENT DRIVE BELT

Engine : RHY - RHZ

With air conditioning
Tools
[1] Belt tension adjusting square
[2] $\varnothing 4 \mathrm{~mm}$ peg
(-). 0188 J 2
: (-).0188.Q1
[3] $\varnothing 2 \mathrm{~mm}$ peg
(-).0188.Q2
[4] Dynamic tensioner compression lever

Remove

Re-use of belt
WARNING : Mark the direction the belt was fitted in case of re-use of the same belt.

- Compress the tensioner roller (7) by moving it at «c» (in anti-clockwise direction), tool [4].
- Hold the tensioner roller (7) compressed and remove the belt.

No re-use of belt.

- Compress the tensioner roller (7) by moving it at «c» (in anti-clockwise direction), tool [4].
- Peg using tool [2], at «d».
- Loosen the screw (6).
- Bring the eccentric roller (5) towards the rear.
- Tighten the screw (6) by hand.
- Remove the belt.

	AUXILIARY EQUIPMENT DRIVE BELT	XM
Engine : THY		
With air conditioning (continued)		
	NEW BELT. - ove the roller (3), with tool [3] 5714-T.S (6 mm across the flats) until tool [1] 5714-T.Q (Ø 4 mm) is released. - Hold the roller (3) in this position and tighten the screw (2) using tool [2]. Tighten to 3.2 m .daN. - Rotate the crankshaft by $\mathbf{5}$ turns (Direction of rotation) $=\mathbf{1}$ turn of the belt. - Check the tension by inserting the tool [1] ($\varnothing \mathbf{2 ~ m m}$) in the hole (5) of the automatic tensioner (4). - If the tension is not correct, repeat the tensioning procedure.	

CHECKING AND SETTING THE VALVE TIMING								ALL TYPES	
	XU							EW	ES
	5	7			10				9
	JP	JB	JP	JP4	J2TE	J4R		J4	
	1.6 i	1.8 i	1.8 i 16 V		$\begin{gathered} 2.0 \mathrm{i} \\ \text { Turbo } \mathrm{CT} \end{gathered}$	2.0 i 16 V			3.0 i
Engine type	BFZ	LFX	$\begin{gathered} \substack{\text { LFY } \\ \rightarrow \quad 11 / 97} \end{gathered}$	$\begin{gathered} \hline \text { LFY } \\ 11 / 97 \rightarrow \end{gathered}$	RGX	$\begin{gathered} \mathrm{RFV} \\ \rightarrow \quad 11 / 97 \end{gathered}$	$\begin{gathered} \text { RFV } \\ 11 / 97 \rightarrow \end{gathered}$	RFN	XFZ
XANTIA	X	X	X	X		X	X		X
XM					X	X	X		X
SYNERGIE								X	
See pages :	85 to 86		87 to 91	82 to 96	85 to 86	87 to 91	92 to 96	97 to 101	102 to 106

ALL TYPES	CHECKING AND SETTING THE VALVE TIMING (continued)					
	XUD		DW		XUD	DK
	9		10		11	5
	BTF	TD	ATED	ATED4	BTE	ATE
	1.9 TD			2.0 HDi 16V	2.1 TD	2.5 TD
Engine type	DHX	RHY	RHZ	RHW	P8C	THY
XANTIA	X	X	X			
XM					X	X
SYNERGIE			X	X		
See pages :	107				113 to 114	115 to 117

CHECKING AND SETTING THE VALVE TIMING

Engines : BFZ - LFX - RGX (continued)

SETTING THE VALVE TIMING

- Fit the tension measuring tool to the middle of the belt strip «c».

- Turn the tensioner roller (2) (anti-clockwise direction) using the tool 7017-T.W to obtain the following measurements :
- Engines : LFZ - LFW : 30 ± 2 SEEM units.
- Engines: RGX-RFU: 16 ± 2 SEEM units.
- Tighten the screw (1) to $2 m$.daN
- Remove the tools.
- Rotate the crankshaft by two turns (do not turn backwards).
- Check the setting by positioning the pegs at «a» and «b».
- Remove the pegs.

CHECKING THE TENSION

- Rotate the crankshaft by two turns (do not turn backwards).
- Peg the camshaft pulley at «a».
- Fit the tension measuring tool on the belt strip at «c».
- The tension measurement should be 44 ± 2 SEEM units.
(If the measurement is not correct, repeat the tensioning procedure).
- Remove the tools.

CHECKING AND SETTING THE VALVE TIMING

Engine : LFY - RFV \rightarrow 11/97

- Belt tension measuring instrument.
- Crankshaft locating peg
- Camshaft pulley locating peg.
- Tensioning tool
- Toothed sector for locking the flywheel XM
-
- Toothed sector for locking the flywheel XANTIA : 9044-T

CHECKING THE SETTING

- Turn the engine by the crankshaft screw (1)
- Ensure that the slot (a) for pegging the camshaft hubs can be seen (Conformity of hubs). - Turn the engine by the screw (1) and peg the crankshaft at (2).

ESSENTIAL : Check that the crankshaft DAMPERS pulley is in good condition.
If the hub/pulley markings do not line up, the crankshaft pulley must be replaced.

- Peg the camshaft pulleys at (3). (The locating pegs should slide in easily).

If this is not the case :

- Check that the crankshaft pegs can be engaged correctly.
-Slacken the six screws (4) of pulleys (7) and (8)
-Peg the hubs at (3). (If necessary, turn the camshaft by the screw (5)).
-Tighten the screws (4) to $1 \mathrm{~m} . d a N$.
-Remove the pegs.

CHECKING AND SETTING THE VALVE TIMING

Engines : LFY - RFV \rightarrow 11/97 (continued)

PRE-TENSIONING THE TIMING BELT

- Fit the tool 4122-T.
- Turn the roller (6) with the tool 7017-T.W.
Pre-tension to

Engines	LFY - RFV
New belt	45 SEEM units

- Tighten the roller (6) to $2 \mathrm{~m} . \mathrm{daN}$, and the six screws (4) to $1 \mathrm{~m} . \mathrm{daN}$ - Remove the tool 4122-T, the pegs (3) and the plastic clamp at "c". Fit the timing cover (12), the pulley (13), the screw (1) (LOCTITE E6 on the threading, tighten to $\mathbf{1 2} \mathbf{~ m . d a N}$).

CHECKING AND SETTING THE VALVE TIMING

Engines : LFY - RFV \rightarrow 11/97 (continued)

SETTING THE VALVE TIMING (Cont.)

- Rotate the crankshaft by 2 turns.
- Peg the crankshaft at (2).
- Loosen the screws (4).
- Peg the hubs of pulleys (7) et (8) at (3).
(If necessary, turn the camshaft using the screw (5)).
- Tighten the screws (4) to $1 \mathbf{m}$.daN.
- Remove the pegs.

CHECKING THE BELT TENSION

- Rotate the crankshaft by $\mathbf{1 / 4}$ turn to align the locating peg hole (2) of the pulley (13), with the screw (14). (Do not turn backwards).
- The tension measurements must be between:

Engines	LFY - RFV
New belt	36 ± 4 SEEM units

If the measurements are different, repeat the tensioning procedure.

CHECKING AND SETTING THE VALVE TIMING

TOOLS

- [1] Belt tension measuring instrument

4122-T

- [2] Camshaft locating peg

9041-T.Z

- [3] Crankshaft locating peg
: 7014-T.N
- [4] Camshaft pulley locking peg
- [5] Tensioning tool
: 4200-T.G
Tool kit 7004-T
: 7017-T.W
9044-T

CHECKING THE SETTING

- Turn the engine using the crankshaft screw (1).
- Peg the crankshaft using the tool [3].

ESSENTIAL : Check that the crankshaft DAMPERS pulley is in good condition. If the hub/pulley markings do not line up, the crankshaft pulley must be replaced.

- Peg the camshafts using the tool [2]
(The locating pegs [2] should slide in easily).
- If this is not the case, set the timing. NOTE : Camshaft hubs (See page 120)

CHECKING AND SETTING THE VALVE TIMING

CHECKING AND SETTING THE VALVE TIMING

Engine : RFN

Adjusting the tension (continued)

- Tighten the screw (7) of the the tensioner roller (6) to $2.1 \pm 0.2 \mathrm{~m}$. daN.

IMPERATIVE : The hexagonal drive of the tensioner roller (6) must be at 15° below the level of the cylinder head gasket "g". If not, replace the tensioner roller (6) or the timing belt and the tensioner roller (6).

Refit (continued)

- Remove the tools [1] et [2].
-Turn the crankshaft 10 times in the normal direction of rotation
IMPERATIVE : No pressure or outside action must be brought to bear on the timing belt.
- Peg the inlet camshaft pulley, using the tool [1].

Checks
Timing belt tension
IMPERATIVE : Check the position of the index «c», it should be facing the notch «f». If the position of index «c» is not correct, restart the adjustment of its position.
Positioning of the crankshaft

- Fit tool [2].
-As long as it is possible to fit tool [2], continue with the refit operations.
IMPERATIVE : If it is not possible to fit tool [2], reposition the flange (14).

CHECKING AND SETTING THE VALVE TIMING

Engine : XFZ

TOOLS

- [1] Belt tension measuring instrument
- [2] Crankshaft locating peg
- [3] Camshaft pulley locating peg
- [4] Timing checking peg
- [5] Dynamic tensioner calibration shim
(-). 0187
(-). 0187 B
(-). 0187 C.Z. $\} \quad$ Tool kit (-). 0187
- [6] Camshaft locking lever
- [7] Belt retaining pin
: (-).0187 F
: (-). 0187 J.

CHECKS

- Rotate the crankshaft by 2 turns (clockwise).
- Peg the crankshaft at (a), using tool [2].
- Check that the peg [4] can be freely engaged in the cylinder heads at the camshaft pulleys at (b).

CHECKING AND SETTING THE VALVE TIMING

SETTING THE VALVE TIMING

NOTE : When positioning the belt on the camshaft pulleys, rotate it in an anti-clockwise direction in order to engage the nearest tooth.
The angular displacement of the pulleys must not exceed one tooth.

- Lightly tighten the screw (7) so that the belt is lightly tensioned.
- Remove the tool [7].
- Fit the tool [1].
- Tighten the belt using the screw (7) to obtain a tension of : 83 $\pm \mathbf{2}$ SEEM units $\mathbf{=} \mathbf{5 0}$ daN.

ESSENTIAL : Check that the camshaft pulleys are not against the end of the slots.

(Otherwise, repeat the belt fitting operation).

- Remove the tools.
- Tighten the camshaft pulley screws in the following order: (1), (2), (3) and (4) Tighten to 1 m.daN.
- Tighten the screws (9) to 2.5 m .daN in the order indicated.
- Rotate the crankshaft by 2 turns (clockwise). Do not turn backwards.
- Peg the crankshaft using the tool [2].
- Loosen the camshaft pulley screws and the screws (9).

CHECKING AND SETTING THE VALVE TIMING

Engine : XFZ (continued)

SETTING THE VALVE TIMING

- Remove the screw (8)
- Loosen the screw (7) so that the tool [5] can move without any play..
- Wait for 1 minute (Damper action).
- Check that the tool [5] can move without any play.

Remove the tool [5].
Tighten the screws (9) to 2.5 m.daN (In the order indicated).

- Remove the screw (7) and the tool [2]

Rotate the crankshaft by 2 turns (clockwise). (Do not turn backwards)

- Peg the camshafts in the order 4, 3, 2 and 1 as follows :

Peg [3] ENGAGES : Loosen the camshaft pulley screws by 45°.

- Peg [3] DOES NOT ENGAGE : Loosen the camshaft pulley screws by 45° and turn the hub using the tool [6] until the peg engages.
- The camshaft pulley screws must not be against the end of the slots
(Otherwise, repeat the belt fitting operation).
- Tighten the camshaft pulley screws in the following order : 4, 3, 2 and 1. Tighten to $1 \mathbf{m} . d a N$.
- Remove the tools.
- Rotate the engine by 2 turns.

Check the timing.

Setting the valve timing (continued).

-Position tool [1] on the belt at «b».

- Turn the roller (6) (anti-clockwise) using tool [2] to attain a tension of : 98 ± 2 SEEM units
- Tighten screw (7) of the roller (6), tighten to 2.5 m.daN.
- Remove one screw (9) from the pinion (12).
(to check that the screws are not against the end of the buttonhole).
- Tighten the screws (9) to $2 \mathbf{m}$ daN.
- Remove tools [1],[2],[3] and [5].
- Rotate the crankshaft 8 times (normal direction of rotation).
- Fit the tool [3].
- Loosen screws (9).
- Fit tool [5].
- Loosen screw (7) (to free the roller (6)).
- Fit tool [1].
- Turn the roller (6) (anti-clockwise), tool [2], to attain a tension of :

CHECKING AND SETTING THE VALVE TIMING

Setting the valve timing (continued).
Tighten :

- The screw (7) of the roller (6) to $2.5 \mathrm{~m} . \mathrm{daN}$.
- The screw (9) to 2.m.daN.
- Remove the tool [1].
- Refit the tool [1].
- Tension value should be : $54 \pm \mathbf{3}$ SEEM units.

IMPERATIVE : If value is incorrect, restart the operation

- Remove tools [1], [3] and [5].
- Rotate the crankshaft 2 times (normal direction of rotation).
- Fit the tool [3].

WARNING : Should it be impossible to peg the camshaft, check that the offset between the camshaft pinion hole and the pegging hole is not more than 1 mm ..
In the case of an incorrect value, recommence the operation.

- Remove the tool [3].

CHECKING AND SETTING THE VALVE TIMING

Engine : P8C (continued)

SETTING THE VALVE TIMING

- Fit the belt in the following order :

Injection pump pulley (2) (strap tensioned), engage half the width of the belt on :
the guide roller (4), the crankshaft pinion, the water pump pinion (5), the camshaft pulley (1),
the tensioner roller (6).

- Align the belt.
- Remove the three pegs.
- Loosen the nut (9).
- Rotate the crankshaft by 2 turns until the pegs can be engaged (without refitting the pegs). ESSENTIAL : Never turn the crankshaft backwards.
- Tighten the nut (9) Tighten to $1 \mathrm{~m} . d a N$.
- Rotate the crankshaft by 2 turns to reach the pegging point (without refitting the pegs).
- ESSENTIAL : Never turn the crankshaft backwards.
- Loosen the nut (9) by one turn and allow the spring to operate.
- Tighten the nut (9) and the screw (3). Tighten to 1 m.daN.

Refit the three pegs.
NOTE : If it is impossible to refit one of the pegs, restart the belt fitting operation.
Remove the pegs.

SPECIAL FEATURES OF THE TIMING
Camshaft hub marking \rightarrow 11/97

	Identification marks a - b
Inlet camshaft	«a»
Exhaust camshaft	«b"
Inlet camshaft	$\mathrm{N}^{\circ} 1$
Exhaust camshaft	$\mathrm{N}^{\circ} 2$

Note : The identification marks are visible next to the pegging slot. Mark «c", bearing the number, is engraved on the rear side of the hub (1).

ALL TYPES	CHECKING THE OIL PRESSURE						
Tool kit 4103-T	To be read with the Petrol and Diesel correspondence tables						
	XU All Types				EW	XU	V6
	1.6 i	1.8 i	1.8 i 16 V	2.0 i 16V		$\begin{gathered} 2.0 \mathrm{i} \\ \text { Turbo CT } \end{gathered}$	3.0 i
Engine type	BFZ	LFX	LFY	RFV	RFN	RGX	XFZ
Temperature (${ }^{\circ} \mathrm{C}$)	80°				90°	80°	90°
Pressure (Bars)	5.3		6	6.4	4	5.5	5
Rpm	4000						3000
	XUD	DW			XUD		DK
	1.9 TD	2.0 HDi		2.0 HDi 16V	2.1 TD		2.5 TD
Engine type	DHX	RHY	RHZ	RFW	P8C		THY
Temperature (${ }^{\circ} \mathrm{C}$)	80°						90°
Pressure (Bars)	5	4					3
Rpm	4000						2000

ALL TYPES			ENGINE OIL PRESSURE SWITCH				
Engine type			Location Above the oil filter	Tightening torque (m.daN) 3.4	Warning lamp goes out at : (Bars)		
XUD All Types	1.9 TD	DHX				0.5	
	2.0 TD	P8C	Near the oil filter	2.8			
DW10 All Types	20 HDi	RHY					
		RHZ					
	2.0 HDi 16V	RHW					
DK5	2.5 TD	THY	Above the starter motor	2.3	D6AP01MB		D6AP01ND

ALL TYPES

FILLING AND BLEEDING THE COOLING CIRCUIT

FILLING AND BLEEDING

- Fit the filling cylinder 4520-T to the filler orifice
- Use the coolant to ensure protection between - $15^{\circ} \mathrm{C}$ and $-37^{\circ} \mathrm{C}$.

Slowly fill the system.

NOTE : Keep the cylinder filled up (visible level)

- Close each bleed screw as soon as the coolant flows without air bubbles.
- Start the engine : Engine speed 1500 rpm.
- Maintain this speed until the cooling fans have cut in and cut out.
- Stop the engine and allow it to cool down.
- Remove the filling cylinder 4520-T.
- Top up the system to the max. mark, with the engine cold.
- Refit the filler cap.

IDLING - ANTI-POLLUTION						XANTIA - XM - SYNERGIE			
Vehicles		Engine type	Emission standard	Make - Injection type	Idling speed (± 50 rpm)		\% Content		
		Manual gearbox			Auto. Gbox : N gear engaged	co	CO2		
XANTIA	1.6 i		BFZ	L3	M. MARELLI 8P13	850	800	< 0.5	> 9
	1.8 i	LFX	M. MARELLI 1AP20						
	1.8 i 16 V	LFY	SAGEM SL96 (Manual)/ BOSCH MP7.2 (Automatic)						
	1.8 i 16V Dual fuel	LFY	SAGEM SL96 (Petrol)/ NEKAM KOLTEC (LPG)						
	1.8 i 16 V	LFY	L4	BOSCH MP7.3					
	2.0 i 16V	RFV	L3	BOSCH MP5. 2	800				
	3.0 i V6	XFZ		BOSCH MP7.0	650 *	650			
XM	$2.0 \mathrm{i} \mathrm{16V}$	RFV		BOSCH MP5.2	800	800			
	2.0 i Turbo CT	RGX		BOSCH MP3.2					
	3.0 i V6	XFZ		BOSCH MP7.0	650 (*)	650			
SYNERGIE	2.0 i 16V	RFN	IF L5	M. MARELLI 48P2	800		< 0.5	>9	
*Variable speed depending on : Battery voltage, parking manoeuvre, temperature.									

XANTIA	PETROL INJECTION						
	XANTIA						
	1.6 i	1.8 i	1.8 i 16 V Dual fuel		1.8 i 16 V	2.0 i 16 V	3.0 i V6
Engine type	BFZ	LFX	LFY		LFY	RFV	XFZ
Emission standard	L3				L4	L3	
Make Injection type	M. MARLELLI 8P13	M. MARELLI 1 AP20	$\begin{aligned} & \text { SAGEM } \\ & \text { SL96 } \end{aligned}$		$\begin{aligned} & \text { BOSCH } \\ & \text { MP } 7.3 \end{aligned}$	BOSCH MP5.2	$\begin{aligned} & \text { BOSCH } \\ & \text { MP7.0 } \end{aligned}$
Fuel pressure (bars)	2.5			1	3		3
Overspeed cut-off (rpm)	6300	6400	6500	M. MARELLI 1AP40	6500	6530	6520
Injection cut-in during deceleration (rpm)	1500	1400	1500	3	1500	1200	1100
Résistance injecteurs (en ohms)	16	14.5	16	6500	14.5	14.5	12
Engine coolant temperature sensor resistive value (ohms)	3800 at $10^{\circ} \mathrm{C}$		2500 at $20^{\circ} \mathrm{C}$		800 at $50^{\circ} \mathrm{C}$	230 at $90^{\circ} \mathrm{C}$	
Idling actuator or stepper motor resistive value (ohms)	Stepper motor : 53						
Air temperature sensor resistive value (ohms)	3800 at $10^{\circ} \mathrm{C}$		2500 at $20^{\circ} \mathrm{C}$		800 at $50^{\circ} \mathrm{C}$	230 at $90^{\circ} \mathrm{C}$	

PETROL INJECTION				XM - SYNERGIE
	XM			SYNERGIE
	2.0 i 16 V	2.0 i Turbo CT	3.0 i V6	2.0 i 16 V
Engine type	RFV	RGX	XFZ	RFN
Emission standard	L3			IF L5
Make Injection type	$\begin{aligned} & \text { BOSCH } \\ & \text { MP5. } 2 \end{aligned}$	$\begin{aligned} & \text { BOSCH } \\ & \text { MP3.2 } \end{aligned}$	$\begin{aligned} & \text { BOSCH } \\ & \text { MP7.0 } \end{aligned}$	M. MARELLI 48P2
Fuel pressure (bars)	3			
Overspeed cut-off (rpm)	6530	6400	6520	
Injection cut-in during deceleration (rpm)	1200	1400	1100	
Injector resistive value (ohms)	14.5	16	12	
Engine coolant temperature sensor resistive value (ohms	3800 at $10^{\circ} \mathrm{C}$	2500 at $20^{\circ} \mathrm{C}$	800 at $50^{\circ} \mathrm{C}$	230 at $90^{\circ} \mathrm{C}$
Idling actuator or stepper motor resistive value (ohms)	Stepper motor : 53	E.V. : 22	E.V. : 11	Stepper motor : 53
Air temperature sensor resistive value (ohms)	3800 at $10^{\circ} \mathrm{C} \quad 2500$ at $20^{\circ} \mathrm{C}$		800 at $50^{\circ} \mathrm{C}$	230 at $90^{\circ} \mathrm{C}$

ANTI-POLLUTION TECHNICAL CHECKS (FRANCE)	
All Types Petrol CO Corrected (l \%)	All Types Diesel (m^{-1})
Conditions : At idle, engine warm. \rightarrow 01/96 Less than 4.5 \% for vehicles registered before 10/86. Less than $\mathbf{3 . 5} \%$ for vehicles registered after 10/86. With catalytic converter Greater than 2.0 i 89 M.Y. All Types $\quad 93$ M.Y. CO less than 0.5% at idle speed. CO less than $\mathbf{0 . 3} \%$ at fast idle speed between 2500 and $\mathbf{3 0 0 0} \mathbf{~ r p m ~ (*) ~}$ (*) Except : TU5 JP : $\mathbf{2 2 0 0} \mathbf{r p m} \pm 100$. XU5JP : 1500 rpm or $3100 \mathrm{rpm}(\pm 100)$. XU7JP : 1500 rpm or $3100 \mathrm{rpm}(\pm 100)$. NOTE: On XU5JP and XU7JP engines at 1500 rpm, the check should be carried out with main beams, rear heated screen and cabin ventilation switched on and with the front wheels on maximum lock (if the vhicle has power-assisted steering). Lambda Probe value 0.97 to 1.03 .	Features : Xantia, MMDCM injection on 1.6 i (BFZ) engine, 1.8 i (LFZ) engine and 2.0i (RFX) engine. Should the check reveal excessive CO, make sure that the ECU channel 25 is not connected to earth in error. (See Info-rapid \mathbf{N}° 77) $\text { 01/96 } \rightarrow$ Atmospheric engine. Less than $2.5 \mathbf{~ m}^{-1}$ Turbocharged engine. Less than $3.0 \mathrm{~m}^{-1}$

EMISSION STANDARDS							ALL TYPES
STANDARD				APPLICATION		NOTES	CHARACTERISTICS
E.E.C.	PSA		Engines	Vehicles	Applicable		
	A-S	RP					
$\begin{gathered} \text { ECE } \\ \text { R } 15.04 \end{gathered}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~K}^{\prime} \end{aligned}$	$\begin{aligned} & 15.04 \\ & 15.04 \end{aligned}$	Petrol Diesel	Private vehicles: >2 litres - new cyl. < 2 litres - existing cyl. < 2 litres	$\begin{aligned} & \rightarrow 06 / 89 \\ & \rightarrow 06 / 92 \\ & \rightarrow 12 / 92 \end{aligned}$	Brussels directive 83/351 \rightarrow except special derogations for certain private vehicles cyl. > 2 litres	With oxygen sensor, without catalytic converter
				Utility vehicles: All Types	$\rightarrow 10 / 89$ imminent	\rightarrow Utility vehicle limits = private vehicle limits increased by 25% \rightarrow For private vehicles and utility vehicles in major export	
$\begin{gathered} \text { ECE } \\ \text { R } 15.05 \end{gathered}$	W vp	15.05	Petrol	Private vehicles: > 2 litres - new models - existing models	$\begin{aligned} & 01 / 10 / 88 \rightarrow \\ & 01 / 10 / 89 \rightarrow \end{aligned}$	Brussels directive 88/76 " Luxembourg Accords " \rightarrow Replaced by 89/458 + 91/441	

ALL TYPES			EMISSION STANDARDS				
STANDARD				APPLICATION		NOTES	CHARACTERISTICS
E.E.C.	PSA		Engines	Vehicles	Applicable		
	A-S	RP					
$\begin{gathered} \text { ECE } \\ \text { R } 15.05 \end{gathered}$	W vu	15.05	Petrol Diesel	Utility vehicles: All Types - new models - existing models	$\begin{gathered} 01 / 10 / 88 \rightarrow \\ 01 / 10 / 89 \rightarrow \\ \rightarrow 10 / 94 \end{gathered}$	Brussels directives 88/76 and 88/436 \rightarrow Utility vehicle limits private vehicle limits of Brussels directive 88/436 7 classes of limits by vehicle weight	
US 83	Z	US 83	Petrol Diesel	Private vehicles : - certain non-EEC European countries - certain Export countries	Current	\rightarrow Adoption of the U.S.	With oxygen sensor and catalytic converter for petrol vehicles

EMISSION STANDARDS							ALL TYPES
STANDARD				APPLICATION		NOTES	CHARACTERISTICS
E.E.C.	PSA		Engines	Vehicles	Applicable		
	A-S	RP					
US 87	Y	US 87	Diesel	Private vehicles: - certain non-EEC European countries - certain Export countries	Current	\rightarrow Adoption of the U.S. standard	With catalytic converter and EGR
US 93	Y2	US 93	Petrol Diesel	Private vehicles: - certain Export countries	Current	\rightarrow Adoption of the U.S. standard	
US 84 LDT	X1	US 84	Petrol Diesel	Utility vehicles: - certain non-EEC European countries - certain Export countries	Current	\rightarrow Adoption of the U.S. standard for light utility vehicles	
$\begin{aligned} & \text { US } 87 \\ & \text { LDT } \end{aligned}$	X2	US 87	Petrol Diesel	Utility vehicles: - certain non-EEC European countries - certain Export countries	Current	\rightarrow Adoption of the U.S. standard for light utility vehicles	

ALL TYPES			EMISSION STANDARDS				
STANDARD				APPLICATION		NOTES	CHARACTERISTICS
E.E.C.	PSA		Engines	Vehicles	Applicable		
	A-S	RP					
$\begin{gathered} \text { US } 90 \\ \text { LDT } \end{gathered}$	X3	US 90	Petrol Diesel	Private vehicles : - certain non-EEC European countries - certain Export countries	Current	\rightarrow Adoption of the U.S. standard for light utility vehicles	
EURO 1 (EURO 93)	L1	$\begin{aligned} & \text { CEE } \\ & 19.5 \end{aligned}$	Petrol Diesel	Private vehicles: < 1.4 litres - new models - existing models	$\begin{aligned} & 07 / 92 \rightarrow \\ & \rightarrow 01 / 07 / 93 \\ & \rightarrow 31 / 12 / 94 \end{aligned}$	Brussels directive 89/458 \rightarrow Possible alternative to emission standard L from 1992 to 1994	
$\begin{aligned} & \text { EURO } 1 \\ & \text { (EURO } \\ & 93 \text {) } \end{aligned}$	L	$\begin{aligned} & \text { CEE } \\ & 19.5 \end{aligned}$	Petrol Diesel	Private vehicles: All Types - new models - existing models - new models - existing models	$\begin{aligned} & 07 / 92 \rightarrow \\ & 01 / 93 \rightarrow \\ & \rightarrow 01 / 96 \\ & \rightarrow 01 / 97 \end{aligned}$	EU Brussels Directive 93/59 (91/441)	With oxygen sensor and catalytic converter for petrol vehicles. With catalytic converter and EGR for diesel vehicles.

EMISSION STANDARDS							ALL TYPES
STANDARD				APPLICATION		NOTES	CHARACTERISTICS
E.E.C.	PSA		Engines				
	A-S	RP		Vehicles			
EURO 1 (EURO 93)	W2	$\begin{aligned} & \text { CEE } \\ & \text { W2 } \end{aligned}$	Petrol Diesel	Utility vehicles : < 3.5 tonnes - new models - existing models Class 1 : - new models - existing models Class 2/3 : - new models - existing models	$\begin{aligned} & 01 / 10 / 93 \rightarrow \\ & 01 / 10 / 94 \rightarrow \\ & \rightarrow 01 / 97 \\ & \rightarrow 10 / 97 \\ & \\ & \rightarrow 01 / 98 \\ & \rightarrow 10 / 98 \end{aligned}$	Brussels directive 93/59 $\rightarrow 3$ classes depending on vehicle weight : Class $1<1250 \mathrm{~kg}$ Class 2 : 1250/1700 kg Class $3>1700 \mathrm{~kg}$	With oxygen sensor and catalytic converter for petrol vehicles
EURO2 (EURO 96)	L3	$\begin{gathered} \text { CEE } \\ 95 \end{gathered}$	Petrol Diesel	Private vehicles: < 6 seats and < 2.5 tonnes - new models - existing models	$\begin{aligned} & 01 / 96 \rightarrow \\ & 01 / 97 \rightarrow \end{aligned}$	Brussels directive 94/12 \rightarrow EURO 93 standard made stricter	With oxygen sensor and reinforced catalytic converter for petrol vehicles. With catalytic converter and EGR for diesel vehicles.

ALL TYPES			EMISSION STANDARDS				
STANDARD				APPLICATION		NOTES	CHARACTERISTICS
E.E.C.	PSA		Engines	Vehicles	Applicable		
	A-S	RP					
EURO 2 (EURO 96)	W3	$\begin{gathered} \text { CEE } \\ 95 \end{gathered}$	Petrol Diesel Gas	Utility vehicles : < 3.5 tonnes Class 1 : - new models - existing models Class 2/3 : - new models - existing models	$\begin{aligned} & 01 / 97 \rightarrow \\ & 10 / 97 \rightarrow \\ & 01 / 98 \rightarrow \\ & 10 / 98 \rightarrow \end{aligned}$	Brussels directive 96/69 $\rightarrow 3$ classes depending on vehicle weight : Class $1<1250 \mathrm{~kg}$ Class 2 : 1250/1700 kg Class 2 : 1700 kg	With oxygen sensor and reinforced catalytic converter for petrol vehicles. With catalytic converter and EGR for diesel vehicles.
EURO 3 (EURO 2000)	L4	$\begin{aligned} & \text { CEE } \\ & 2000 \end{aligned}$	Petrol Diesel Gas	Private vehicles: All Types - new models - existing models	$\begin{aligned} & \rightarrow 01 / 2000 \\ & \rightarrow 01 / 2001 \end{aligned}$	Brussels directive 98/69 \rightarrow EURO 2 standard (L3) made stricter \rightarrow Fiscal incentives	With 2 oxygen sensors and catalytic converter for petrol vehicles. With catalytic converter and EGR for diesel vehicles.With EOBD on-board diagnosis.

EMISSION STANDARDS							ALL TYPES
STANDARD				APPLICATION		NOTES	CHARACTERISTICS
E.E.C.	PSA		Engines	Vehicles			
	A-S	RP		Vehicles	App		
$\begin{gathered} \text { EURO } 3 \\ \text { (EURO } \\ 2000 \text {) } \end{gathered}$	W3		Petrol Diesel Gas	Utility vehicles: < 3.5 tonnes Class 1 : - new models - existing models Class 2/3: - new models - existing models	$\begin{aligned} & \rightarrow 01 / 2000 \\ & \rightarrow 01 / 2001 \\ & \rightarrow 01 / 2001 \\ & \rightarrow 01 / 2002 \end{aligned}$	Brussels directive 98/69 \rightarrow EURO 2 standard (L3 made stricter \rightarrow Fiscal incentives $\rightarrow 3$ classes depending on vehicle weight : Class $1<1305 \mathrm{~kg}$ Class $2: 1305 / 1760 \mathrm{~kg}$ Class 2 : 1760 kg	With 2 oxygen sensors and catalytic converter for petrol vehicles. With catalytic converter and EGR for diesel vehicles. With EOBD on-board diagnosis.
EURO 4	$\left\|\begin{array}{c} \mathrm{IF} / \mathrm{L5} \\ \mathrm{EOBD} \end{array}\right\|$		Petrol	Private vehicles: All Types - new models - existing models diagnostic embarqué	$\begin{aligned} & \rightarrow 01 / 2001 \\ & \rightarrow 01 / 2003 \end{aligned}$	Brussels directive 98/69 \rightarrow EURO 3 standard (L4)) made stricter \rightarrow Fiscal incentives	With 2 oxygen sensors and catalytic converter for petrol vehicles. With EOBD on-board diagnosis.

SAFETY REQUIREMENTS : PETROL/LPG DUAL FUEL SYSTEM

ESSENTIAL : Special precautions should be taken when dealing with gas powered systems

SAFETY REQUIREMENTS.

Only personnel who have been specially trained to work with petrol/LPG DUAL FUEL vehicles are authorised to carry out repairs to the DUAL FUEL system.

- Ensure that these qualified personnel are provided with acrylic-free overalls (risk of static electricity).

In the event of a major gas leak

- Isolate the vehicle in the open air, away from any buildings.
- Call the emergency services (police and fire brigade) should the situation get out of hand.

PRECAUTIONS TO BE TAKEN BEFORE CARRYING OUT ANY REPAIR WORK

Any work on a gas powered vehicle must be carried out in a ventilated area.
Disconnect the battery negative terminal.
Ensure the vehicle is connected to earth.
Ensure the vehicle is kept away from the following hazards :

- Sparks.
- Flames.
- Slow combustion (lit cigarette).

Drain the fuel tank using "flare" type material (following the instructions for this material) before performing one of the following operations :

- Remove the gauge valve.
- Working on the fuel tank.

Before removing the fuel tank or working on the gas circuit located downstream of the safety electrovalve (on the gauge valve), perform the following operations :

- Close the safety electrovalve.
- Switch the engine to use gas.
- Wait for the engine to stop due to lack of fuel.

After each operation, check that the circuit is sealed using one of the following systems :

- Electronic detector .
- Soapy water.
- Any other leak detection product.

Remove the fuel tank when the vehicle is to be subject to high temperatures (above 50oC) (spray booth).
Do not clean the engine compartment with a high pressure device and do not use detergents.

1) Fuel tank

- Capacity : 70 litres.
- Max. pressure : during tests / in operation : $\mathbf{3 0}$ bars / 20 bars.
- Max. operating temperature : $50^{\circ} \mathbf{C}$.
- Location : in the boot.

2) Fuel gauge

- Supply voltage : $\mathbf{1 2}$ volts.
- Resistance : $\mathbf{0}$ to 15 ohms empty, 280 to $\mathbf{3 1 5}$ ohms full.
- Location : on the gauge valve.

3) LPG gauge valve.

- Location : on the fuel tank.

4) Safety electrovalve.

- Supply voltage : $\mathbf{1 2}$ volts.
- Power : 8W.
- resistance : 18 ohms.
- Location : on the gauge valve.

5) Filler orifice with safety valve.

- Location : on the rear right wing.

6) Injectors and valves.

- Location : in the engine compartment, under the air manifold.

7) Pressure sensor.

- Ssupply voltage : 5 volts.
- Location : on the evaporator control valve support.

8) Temperature sensor $15^{\circ} \mathrm{C}$.

- Location : on the control valve reheating circuit.

9) LPG filter.

- Type : paper.
- Replacement intervals: every $\mathbf{3 7 , 5 0 0}$ miles.
- Location : on the evaporator control valve inlet union.

10) Supply electrovalve.

- Supply voltage : $\mathbf{1 2}$ volts.
- Power : 8W.
- Resistance : 18 ohms.
- Location : on the evaporator control valve inlet union.

ALL TYPES

SPECIFICATIONS : PETROL/LPG DUAL FUEL SYSTEM
11) Evaporator control valve.

- Make : NECAM.
- Typt : MEGA.

Setting pressure - 2nd stage.

- Setting pressure for a new evaporator control valve :
- $-\mathbf{9 7 0} \pm 10 \mathrm{mb}$
- Setting pressure for a used evaporator control valve :
- $-\mathbf{9 6 0} \pm 10 \mathrm{mb}$

12) Stepper motor

- Location : on the distributor.

13) Distributor.

- Location : on the evaporator control valve support.

14) Distributor electrovalve.

- Supply voltage : $\mathbf{1 2}$ volts.
- Resistance : $\mathbf{2 5}$ ohms.
- Pression de réglage vaporisateur-détendeur ayant déjto servi :
- $\mathbf{1 4 0 0} \pm 50 \mathrm{mb}$.

ESSENTIAL :

Before checking and setting the pressure, it is essential that you read through and follow closely BROCHURE: BRE 0332.

Setting pressure - 1st stage.

- Pression de réglage vaporisateur-détendeur neuf :
- $\mathbf{1 4 5 0} \pm 50 \mathrm{mb}$.

XANTIA - SYNERGIE

PROHIBITED OPERATIONS: HDI DIRECT INJECTION SYSTEM

Engines : RHZ - RHY
High pressure fuel injection common rail.

- Do not separate the connectors (7) from the common injection rail (6) (malfunction).
Diesel injectors.
WARNING: Diesel and ultrasonic cleaners are prohibited.
Do not separate the following components from the diesel injector carrier (9) :
- Diesel injector (8) (no replacement parts).
- Electromagnetic element (11) (destruction).
- Do not alter the position of the nut (10) (malfunction).
- Do not separate the connector (12) from a diesel injector.
- It is forbidden to clean the carbon deposits from the diesel injector nozzle.
- Identification : Injector carrier.

There are 2 types of diesel injector carrier classed according to fuel flow.
Identification by engraving or paint mark

Injector carrier	Engraving	Paint mark	Location
Class 1	$\mathbf{1}$	Blue	On the upper part of the coil near to the fuel return aperture
Class 2	$\mathbf{2}$	Green	

Identification markings:

"a" : Supplier identification.

- "b" : PSA identification number.
- "c" : Class identification.

IMPERATIVE: When replacing a diesel injector carrier, order a component of the same class.
(See repair manual).

SAFETY REQUIREMENTS : HDi DIRECT INJECTION SYSTEM	XANTIA - SYNERGIE
Engines : RHZ - RHY	
SAFETY REQUIREMENTS	
Preamble.	
All interventions on the injection system must be carried out to conform with the following requirements and regulations :	
- Competent health authorities.	
- Accident prevention.	
- Environmental protection.	
WARNING : Repairs must be carried out by specialised personnel informed of the safety requirements and of the precautions to be taken.	
Safety requirements.	
IMPERATIVE : Take into account the very high pressures in the high pressure fuel circuit (1350 bars), and respect the requirements below :	
- No smoking in proximity to the high pressure circuit when work is being carried out.	
- Avoid working close to flame or sparks.	
Engine running :	
- Do not work on the high pressure fuel circuit.	
- Always stay clear of the trajectory of any possible jet of fuel, which could cause serious injuries.	
- Do not place your hand close to any leak in the high pressure fuel circuit.	
After the engine has stopped, wait 30 seconds before any intervention.	
NOTE : This waiting time is necessary in order to allow the high pressure fuel circuit to return to atmospheric pressure.	

XANTIA - SYNERGIE
 SAFETY REQUIREMENTS : HDi DIRECT INJECTION SYSTEM

CLEANLINESS REQUIREMENTS.

Preliminary operations
IMPERATIVE : The technician should wear clean overalls.
Before working on the injection system, it may be necessary to clean the apertures of the following sensitive components : (refer to corresponding procedures).

- Fuel filter.- High pressure fuel pump.
- High pressure fuel injection common rail.
- High pressure fuel pipes.
- Diesel injector carriers.

IMPERATIVE : After dismantling, immediately block the apertures of the sensitive components with plugs, to avoid the entry of impurities.
Work area.

- The work area must be clean and free of clutter.
- Components being worked on must be protected from dust contamination.

XANTIA - SYNERGIE

CHECKS : LOW PRESSURE FUEL SUPPLY CIRCUIT
Engines : RHZ - RHY (continued)
Checks on pressure : dynamic.
Engine running, at idle (normal functioning):

- Fuel supply pressure shown by the pressure gauge $[3]=2 \pm 0.4$ Bar.
- Fuel return pressure shown by the pressure gauge $[3]=0.7 \pm 0.4 \mathrm{Bar}$.

Abnormal functioning

Fuel supply pressure	Fuel return pressure	Checks
Between $\mathbf{3}$ and $\mathbf{3 . 5}$ Bar	$\mathbf{0 . 7} \pm \mathbf{0 . 2} \mathbf{B a r}$	Check the condition of the diesel filter
More than 3.5 Bar	Less than 0.7 Bar	Check the low pressure regulator incorporated in the filter (locked shut) : replace.
More than 3.5 Bar	More than 0.7 Bar	Check the fuel return circuit (pipe pinched or trapped...).
Between 0.8 and 1.5 Bar	Less than 0.7 Bar	Check the fuel suppy circuit : - Booster pump (low pressure), piping.

Impossible to start the engine :
Fuel supply pressure less than 0.8 Bar :

- Check the low pressure regulator incorporated in the filter (locked open).
- Check the high pressure pump distribution valve (locked shut).

Check : diesel injector return flow. (Table below)

Uncouple the diesel injector return pipe.

Check:	Observe :
The flow should be drop by drop.	Diesel injector functioning correctly.
Excessive fuel return.	Diesel injector locked shut.

TOOLS
[1] Manual vacuum pump
IMPERATIVE : Respect the safety and cleanliness requirements.
Vacuum pump.

- Connect the tool [1] on the vacuum pump (1)
- Start the engine.
- Pressure should be 0.8 bar at 780 rpm .

Boost pressure regulator electrovalve.

- Connect the tool [1] between the electrovalve (2) and the valve (3) of the boost pressure regulator.
Compare readings with the values in the table below.

Engine speed (rpm)	Pressure (Bar)
780	0.6
4000	0.25

Pressure regulator valve.

- Connect the tool [1] on the valve (3).
- Appy a pressure of $\mathbf{0 . 5}$ bar to activate the rod "a" :
- Rod "a" should be moved 12 mm .
EANTIA - SYNERGIE

SPECIFICATIONS OF THE DELPHI DIESEL INJECTION PUMP								ALL TYPES
				PUMP - TYPE - REFERENCE				
Emission standards				L3				
Equipment							Compacted (1)	Acoustic (2)
XM	X						$\begin{gathered} \text { XUDLP01 } \\ \text { R } 8640 \mathrm{~A} \\ 051 \mathrm{~A} \end{gathered}$	
SYNERGIE	D							$\begin{gathered} \text { XUDLP01 } \\ \text { R } 8640 \mathrm{~A} \\ 102 \mathrm{~A} \end{gathered}$

(1) = Without acoustic bonnet.
(2) $=$ With acoustic bonnet and foam.

ALL TYPES		SPECIFICATIONS OF THE DELPHI DIESEL INJECTION PUMP										
Engine type	$\begin{gathered} \text { Pump } \\ \text { Type } \\ \text { Reference } \end{gathered}$	Static timing Initial advance Compression Time (cylinder N° 4)	Dynamic timing checking (at idle)	Reference		Colour code	Injector needle lift pressure Bar)	Adjustments (rpm)			Max. speed	
				Injector	Injector holder + injector			Fast idling	Antistall	Idling	Unladen rpm	Laden rpm
P8C	XUDLP01 R 8640A/*	Crankshaft TDC		6751 H	$\begin{array}{\|c\|} \hline 002 R 01 A E 2 \\ 6734 \text { 302H } \end{array}$	ORANGE	163.5 ± 3.5					
		hole pump						NOT ADJUSTABLE				
		pre-positioned by pegging										

(a) : 850 $\mathbf{- 5 0}_{-0}^{0}$ with aircon - (*) See table on page : 153.

SPECIFICATIONS OF THE BOSCH INJECTION PUMP										ALL TYPES	
				PUMP - TYPE - REFERENCE							
Emission standards				L3							
Equipment				Automatic gearbox	ADC 7 keys	Transponder	ADC II	Damper	$\begin{aligned} & \text { ADC } \\ & \text { Damper } \end{aligned}$	Aircon Damper	
XANTIA SYNERGIE	X U D 9	BTF	DHX	$\begin{gathered} \text { XUDBP02 } \\ \text { R 601/3 } \end{gathered}$	$\begin{gathered} \text { XUDBP02 } \\ \text { R 601/2 } \end{gathered}$	$\begin{gathered} \text { XUDBP02 } \\ \text { R 601/5 } \end{gathered}$	$\begin{gathered} \text { XUDBP02 } \\ \text { R 601/5 } \end{gathered}$				
XM	D K 5	ATE	THY								VP36535 VER 520
XANTIA SYNERGIE	$\begin{gathered} D \\ \text { W } \\ 10 \end{gathered}$	TD	RHY RHZ	${ }^{*}$) $=$ The fu	el high press	ure is driven	by the timing				

ALL TYPES		SPECIFICATIONS OF THE BOSCH INJECTION PUMP										
Engine type	Pump Type Reference	Static timing (1) Initial advance Compression Time (cylinder N° 4)	Dynamic timing checking (at idle)	Reference		Colour code	Injector needle lift pressure (Bar)	Adjustments (rpm)			Max. speed	
				Injector	Injector holder + injector			Fast idling	Antistall	Idling	Unladen rpm	Laden rpm
DHX	$\begin{gathered} \text { XUDBP02 } \\ \text { VE R 601 / } \end{gathered}$	$\begin{aligned} & \text { Pump } \\ & 0.57 \mathrm{~mm} \\ & \text { ABDC } \end{aligned}$		299C	$\begin{gathered} \text { KCA } \\ \text { 17S92 } \end{gathered}$	GREEN	175 +50 -0	$\begin{gathered} \text { (2) } \\ \\ 950 \\ \pm 50 \end{gathered}$	$\begin{gathered} 1500 \\ \pm 100 \\ +3 \mathrm{~mm} \\ \text { shim } \end{gathered}$	$\begin{gathered} \hline \text { (3) } \\ 800 \\ +0-50 \end{gathered}$	$\begin{aligned} & 5100 \\ & \pm 80 \end{aligned}$	
$\begin{aligned} & \text { RHY } \\ & \text { RHZ } \end{aligned}$	CP1	Non adjustable		$\begin{aligned} & 96255 \\ & 42580 \end{aligned}$								
THY	$\begin{gathered} \text { VP } 36 \\ 535 \\ \text { VE R } 520 \text { / * } \end{gathered}$	No setting : managed by ECU		$\begin{aligned} & \text { KCE } \\ & 30 S 5 \end{aligned}$	312	YELLOW	$\begin{array}{r} 170 \\ +5-0 \end{array}$					
				Cylinder ${ }^{\circ} 3$				ADJUSTABLE WITH DIAGNOSTIC TOOL				
				$\begin{aligned} & \text { KCE } \\ & 30 S 5 \end{aligned}$	316	NONE						
(1) Engine : Trou de Pige P.M.H (2) Clearance at the fast idle control 1 mm (3) $850=+0-50$ with air conditioning. - *See table on page : 157												
NOTE : For all pumps on 1.9TD engines with a "B" index : the static timing is 0.82 mm (instead of 0.66 mm)												

XANTIA - SYNERGIE

ALL TYPES	SPARKING PLUGS						
Vehicles - Models		Engine type	BOSCH	CHAMPION	SAGEM	Electrode gap setting	Tightening torque
XANTIA	1.61	BFZ	FR7DE	RC8YCL	RFC58 LZ	0.9 mm	2.5 mdaN
	$1.8 i$	LFX					
	1.8i 16v	LFY					
	2.0i 16v	RFV					
	3.0i V6	XFZ	FR 8 KDC	PFR 6 E-10		1 mm	$10 \mathrm{Nm}+90^{\circ}{ }^{*}$)
XM	2.0 i 16 v	RFV	FR7DE	RC8YCL	RFC58 LZ	0.9 mm	2.5 mdaN
	2.01 TcT	RGX					
	3.0i V6	XFZ	FR 8 KDC	PFR 6 E-10		1 mm	$10 \mathrm{Nm}+90^{*}$
SYNERGIE	2.0i 16v	RFN	FR7DE	RC8YCL	RFC58 LZ	0.9 mm	2.5 mdaN
* : Retightening => 2.5 mdaN							

An E.E.C. decree of 25 June 1976, regulates the speed displayed by the speedmeter in relation to the actual speed travelled.

This decree stipulates:

- The speed indicated by a speedometer must never be lower than the actual vehicle speed.
- Between the speed displayed «SD» and the speed travelled «ST», there must always be the following relationship :

ST < SD <1.10 ST + 4 Kph

Example : For an actual speed of 100 Kph the speed displayed by the speedometer may be between 100 and 114 Kph .
The speed indicated by the speedometer may be influenced by :

- The speedometer.
- The tyres fitted to the vehicle.
- The final drive ratio.
- The speedometer drive ratio.

Any of these components can be checked without removing them from the vehicle. (See information note N ${ }^{\circ}$ 78-85 TT of 19 October 1978.
NOTE : Before replacing the speedometer, check the conformity of the following points :

- The tyres fitted to the vehicle.
- The gearbox final drive ratio.
- The speedometer drive ratio.

	CLUTCH SPECIFICATIONS						ALL TYPES
	EW	XU					ES
	10						9
	J4	J4R		J2TE			J4
	Synergie	XM Estate	Synergie	Xantia	XM	Synergie	All Types
	2.0 i 16 V			2.0i Turbo CT			3.0i V6
Engine type	RFN	RFV		RGX			XFZ
Gearbox type	BE3/5	ME/5-ML/5		ML/5	ME/5-ML/5		ML/5
Make	VALEO			LUK	VALEO		
Mécanisme/Type	$\begin{gathered} 230 \text { DING } \\ 4700 \end{gathered}$	235 CP 5650		235 T 5700	235 CP 5650		242 DT 6500
Clutch disc	$\begin{gathered} \hline 228 \text { D } 73 \\ 12 \text { R } 14 \mathrm{X} \\ \hline \end{gathered}$	$\begin{gathered} \hline 228 \mathrm{SH} \\ 11 \mathrm{~A} 15 \mathrm{X} \\ \hline \end{gathered}$		228 D	$\begin{gathered} 228 \text { D } 62 \\ 32 \mathrm{BX} \end{gathered}$		$\begin{gathered} 242 \text { SH (D31) } \\ 11 \text { A } 15 \mathrm{X} \end{gathered}$
Ext./Int. lining Ø		235/155		228/155			242/162
Disc lining type	F 808 DS	F 202					F 808

	ALL TYPES	CLUTCH SPECIFICATIONS					
		XUD		DW			DK
		11		10			5
		BTF		TD	ATED		ATE
		XM- Synergie RHD	$\begin{aligned} & \hline \text { XM } \\ & \text { LHD } \end{aligned}$	$\begin{gathered} \text { All } \\ \text { Types } \end{gathered}$	Xantia	Synergie	$\begin{gathered} \text { All } \\ \text { Types } \end{gathered}$
		2.1 TD		2.0 HDi			2.5 TDi
	Engine type	P8C		RHY	RHZ		THY
	Gearbox type	ME/5-ML/5	ME/5	BE3/5	BE3/5-ML/5	ML/5	MG/5
	Make	VALEO		LUK			VALEO
	Mechanism/Type	235 CP 5650		230 P 4700	235 T 5700	$225 \text { T } 5700$ (1)	242 DT 6500
$\frac{1}{4}$	Clutch disc	$\begin{gathered} 228 \text { SH } \\ 11 \text { A 15X } \end{gathered}$	$\begin{gathered} 228 \text { F (D95) } \\ 32 \text { AX } \end{gathered}$	228	228D	225	$\begin{gathered} 242 \text { SH (D95) } \\ 31 \text { Q } \end{gathered}$
	Ext./Int. lining Ø	235/155		230/	235/155	225/	242/162
	Disc lining type	F 202		F 408	F 202	F 808	F 206
	(1) DVA = Damped double flywheel.						

Push-action clutch with automatic adjustment (Non-adjustable) (*)			
Engines	BFZ - LFX - LFY - RFN - RHY	Gearbox	BE3/5

Refitting the clutch cable.

- Set the pedal to the high position (contact at \mathbf{A}).
- Attach the cable end-piece to the pedal.
- Refit a new clip (3) to the pedal.
- Fit the end-piece (4) to the bulkhead (G6 grease).
- Clip the end-piece (5) to the gearbox.
- Refit the cable to the lever (1).
- Depress the clutch cable several times to set the assembly in place.
- Check that the end-piece (4) is properly fitted to the bulkhead.
- Check the operation of the automatic adjusting device.

1) - Pull the lever (in direction F), the lever must move when pulled by hand.
2) - Press the clutch pedal very lightly and repeat the same operation. The lever should not move back.
(*) See pages : 172 to 173).

XANTIA - XM - SYNERGIE CLUTCH : CHECKS AND ADJUSTMENTS

Pull-action clutch with automatic adjustment (Non-adjustable) (*)

Engines	Xantia - XM	: RFV - DHX	Gearboxes	$\begin{aligned} & \mathrm{BE} 3 / 5 \\ & \hline \mathrm{ME} / 5 \end{aligned}$
	XM	: RGX		
	Synergie	: RFV		ML/5

Refitting the clutch cable.

- Set the pedal to the high position (contact at A).
- Attach the cable end-piece to the pedal.
- Refit a new clip (3) to the pedal.
- Fit the end-piece (4) to the bulkhead (G6 Grease).
- Clip the end-piece (5) to the gearbox.
- Refit the cable to the lever (1).
- Depress the clutch cable several times to set the assembly in place.
Check that the end-piece (4) is properly fitted to the bulkhead.
- Check the operation of the automatic adjusting device.

1) Pull the lever (in direction \mathbf{F}), the lever must move when pulled by hand.
2) Press the clutch pedal very lightly and repeat the same operation. The lever should not move back.
(*) See pages: 172 to 173).

CLUTCH : CHECKS AND ADJUSTMENTS

Engines : BFZ - LFX - LFY - RFV - RGX - RFN - DHX - RHY - RHZ

B2BP02SC

NOTE : This cable has an automatic adjusting device which takes up the clutch disc wear and makes up for the compression of the outer cable.

DESCRIPTION

1 - Metallic cable, crimped on both ends.
2 - Outer cable or telescopic duct.
3 - Outer cable stop, bulkhead side (fixed point on the bodyshell)
4 - Outer cable stop, gearbox side (fixed point on the gearbox).

5 - Tensioning spring ensuring the maximum length of the outer cable.
6 - Wear take up device.
7 - Attaching end-piece.

CLUTCH : CHECKS AND ADJUSTMENTS		XANTIA - XM - SYNERGIE
Engines : BFZ - LFX - LFY - RFV - RGX - RFN - DHX - RHY - RHZ (Continued)		
B2BP03QD		
Operation	Clutch disengagement phase	Engagement / adjustment phase
For the adjusting device to operate correctly, it is necessary that : The pedal is at rest (against its upper stop) The locking sleeve (1) is slightly compressed, the rollers (2) are free, the outer cable (3) length may vary.	As soon as the pedal is applied, the attaching end-piece (4) leaves the sleeve (1) which moves back. The rollers, pushed by spring (5) jam the system. The cable behaves like a conventional cable.	The pedal returns to rest on its upper stop. Attaching end-piece (4) pushes sleeve which frees the rollers. Outer cable (3), kept extended by the spring (6) becomes: - Shorter if the clutch disc is worn. - Longer if the outer cable has been compressed.
NOTE : The pedal gear has a non-adjustable assisting device		

B2BP03QD

For the adjusting device to operate correctly, it is necessary that :
The pedal is at rest (against its upper stop) locking sleeve (1) is slightly compressed the rollers (2) are free, the outer cable (3) length may vary.

As soon as the pedal is applied, the attaching (4) leaves the sleeve (1) which jam the system. The cable behaves conventional cable.

The pedal returns to rest on its upper stop. nd-piece Outer cable (3), kept extended by the spring (6) becomes:
Shorter if the clutch disc is worn Longer if the outer cable has been compressed.
XANTIA - XM - SYNERGIE \quad CLUTCH : CHECKS AND ADJUSTMENTS

Hydraulically operated pull-action clutch (Non-adjustable)

XANTIA - XM - SYNERGIE \quad CLUTCH : CHECKS AND ADJUSTMENTS

Hydraulically operated pull-action clutch (Non-adjustable)
Engines : RGX - XFZ - RHZ - P8C - THY

After fitting on the vehicle, the circuit should be filled with a «DOT 4» type brake fluid.
Clutch control reservoir capacity 120 cc.
(Bleeding is carried out not under pressure)

Repair

The new clutch control components are not compatible with the
old parts.
Both the old and the new components are marketed by «Replacement Parts».

Draining-Filling - Top-up

- Check the level after each repair visit.
- Fill the circuit (after drainage), using a filling cylinder specifically designed for this operation.
- Use the circuit's bleed screw (7).
- The level of fluid inside the clutch control reservoir should be between the min. and max. marks.
NOTE : Wear on the clutch causes a slight increase in the level of fluid inside the control reservoir.

GEARBOX AND TYRE SPECIFICATIONS						XANTIA	
(*) = Long gearbox.	Petrol						
	1.6i	1.8i	1.8i 16V			2.0i 16V	
					Auto.		Auto.
Engine type	BFZ	LFX	LFY			RFV	
Tyres-Rolling circumference	$\begin{gathered} 175 / 70 \mathrm{R14} \\ 1.85 \mathrm{~m} \\ \hline \end{gathered}$	185/65 R14-1.815 m			$\begin{array}{r} 185 / 65 \mathrm{R} \\ \mathbf{1 . 8 9 5 \mathrm { m }} \\ \hline \end{array}$	$\begin{gathered} 205 / 55 \mathrm{R} 15 \\ 1.85 \mathrm{~m} \\ \hline \end{gathered}$	$\begin{gathered} \hline 185 / 65 \mathrm{R15} \\ 1.895 \mathrm{~m} \\ \hline \end{gathered}$
Gearbox type	BE3/5				AL4	BE3/5	AL4
Gearbox ident. plate	20 TD 00	20 TB 94	20 TB 95	95 (*)	20 TP 52	20 TB 97	20 TP 53
Reduction box torque	15X64	19X75	19X79		23×73	19×79	23×73
Speedometer ratio	22X18			X18	20X16	22X18	20×16
(1) = Plastic pinion	Petrol			Diesel			
	$\begin{gathered} 2.0 \mathrm{i} \\ \text { Turbo CT } \end{gathered}$	3.0i V6		1.9 TD		2.0 HDi	
Engine type	RGX	XFZ		DHX		RHY	RHZ
Tyres-Rolling circumference	205/60 R15-1.92 m			205/60R15-1.92m		205/60 R15-1.92 m	
Gearbox type	ML/5		4 HP 20	AL4		BE3/5	ML/5
Gearbox ident. plate	20 LE 90	20 LE 89	20 HZ XX	20 TP 50		20 TB 53	20 LE 84
Reduction box torque	15X67	16X69	20×69	25x71		19X75	16X65
Speedometer ratio	25X20 (1)		20×16	20×16		22X18	25X20 (1)

(*) DVA = Double damped flywheel

XANTIA- XM BE3/5 GEARBOX

SYNERGIE	BE4/5 GEARBOX SPECIFICATIONS	
Engines: RFN		
$\stackrel{23}{1}$	Description (Continued)	
	(1) Primary shaft. (2) Clutch bearing guide. (3) Gearbox casing. (4) Clutch housing. (5) Reverse idle. (6) Drive gear ($3^{\text {rd }}$ gear). (7) $3^{\text {rd }} / 4^{\text {th }}$ gear synchroniser (8) Drive gear (4 ${ }^{\text {th }}$ gear). (9) Drive gear ($5^{\text {th }}$ gear). (10) $5^{\text {th }}$ gear synchroniser. (11) Driven gear ($5^{\text {th }}$ gear). (12) Driven gear ($2^{\text {nd }} / 4^{\text {th }}$ gear) (13) Driven gear (2 $2^{\text {nd }}$ gear).	(14) $1^{\text {st }} / 2^{\text {nd }}$ gear synchroniser (15) Driven gear ($1^{\text {st }}$ gear) (16) Secondary shaft. (17) Differential gear. (18) Satellite gears (19) Planet gears. (20) Boîtier de différentiel. (21) Differential housing. (22) Extension. «d» Adjusting shims : 0.7 to 2.4 mm (0.10 mm and increasing by 0.10 mm). "c" Adjusting shims : 1.4 to 1.6 mm (0.10 mm and increasing by 0.10 mm).

BE4/5 GEARBOX				SYNERGIE
	Engine : RFN			
	Tightening torques			
	Ref.	Description	Number of screws	m.daN
	1	End guide	3	1.2 ± 0.1
	2	Clutch housing	13	1.3 ± 0.1
	3	Primary shaft nut	1	7.2 ± 0.7
	4	Secondary shaft nut	1	6.5 ± 0.7
	5	Yoke holding screw	2	1.5 ± 0.1
	6	Differential gearwheel screw	2	6.5 ± 0.7
		Reverse gear contact	1	2.5 ± 0.3
60, in man	7	Differential housing	4	5 ± 0.5
doger 0	8	Breather pipe	1	1.7 ± 0.2
$\text { vilo ock } x^{12}$	9	Rear housing cover screw	7	1.2 ± 0.1
	10	Top-up plug	1	2.2 ± 0.2
\rightarrow, $0^{8}+74$	11	Differential housing screw	4	1.2 ± 0.1
B2CP3ВTD	12	Drain plug screw	1	3.5 ± 0.4

Engines : RFV - RGX - P8C

Tightening torques m.daN

(1) Gearbox casing screw 1 ± 0.1
(2) Oil dipstick tube nut
4.5 ± 0.4
(3) Strainer cover
(4) Hydraulic valve block
0.8

Note : When replacing an automatic gearbox, it is ESSENTIAL to replace the heat exchanger, as well as the oil.

PRECAUTIONS TO BE TAKEN

Towing

The front of the vehicle must be raised in order to be towed. If the front of the vehicle cannot be raised:

IMPERATIVE : - Put gear lever in position «N»..

- Do not add any oil.
- Do not exceed 50 kph over a distance of 50 km .

Driving

- Never drive with the ignition switched off.

REMOVING - REFITTING. (Automatic gearbox).

WARNING : Never place the gearbox on its lower casing (risk of deforming the tray and damaging the hydraulic valve block). Never use the connections as handles for raising, turning, holding or pushing the gearbox.

ESSENTIAL:

- Fit the converter retaining peg while the gearbox is removed.
- Fit the centring peg to locate the gearbox on the engine: (remove the converter retaining peg just before locating) (impossible with an automatic gearbox).

Lubrication

The automatic gearbox is only lubricated when the engine is running.
WARNING :With the safety programme selected, a snatching can be felt when changing from "P" \rightarrow " R " or " N " \rightarrow " R ".

XANTIA - XM - SYNERGIE

PROCEDURE BEFORE REPAIRS

AL 4 gearbox

Oil Quality

If the gearbox has suffered a serious fault resulting in a malfunction or the destruction of a clutch, the oil will overheat and become contaminated with impurities:
the oil is said to be «burnt».
This is characterised by a black colour and the presence of an unpleasant smell.

ESSENTIAL : The gearbox must be replaced.

XANTIA - XM	RECOMMENDATIONS - PRECAUTIONS : 4 HP 20 AUTOMATIC GEARBOX
	Engine : XFZ
	Tools [1] Hose clamp pliers : 4517-T Tool kit 4507-T [2] Filling cylinder (-).0341. [3] Specific end-piece :(-).0341.B. Checking the oil level. Preliminary conditions - Vehicle in horizontal position, handbrake released. - Engine idling, without using power (headlamps, heated rear screen etc.). - Check absence of gearbox back-up mode; using a diagnostic tool. - Apply the brake, change through all the gears. - Gear selection lever at position P. - The check is to be carried out when the oil has reached a temperature of $55^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$; using a diagnostic tool. - Remove the oil filler plug (3).

RECOMMENDATIONS - PRECAUTIONS : 4 HP 20 AUTOMATIC GEARBOX		XANTIA- XM			
	Engine : XFZ				
	Checking the oil level (continued) Flowing of oil from the oil filler aperture. - As soon as the oil temperature reaches $60^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$, refit the oil filler plug (*). Note: The oil level is correct.				
	No flowing of oil from the oil filler aperture.				
	- Refit the oil filler plug (3). - Stop the engine.				
	- Remove the air vent assembly (1) and (2) from the gearbox; using tool [1]. - Add 0.5 litre of additional oil into the gearbox; using tool [2]. - Repeat the procedure of topping up the oil. - Remove the tools [2] and [3]. - Refit the metallic part (1) of the air vent assembly, using a Ø $\mathbf{1 8} \mathbf{~ m m}$ drift and a mallet. - Clip on the plastic part (2) of the air vent assembly. - Refit the air filter housing. (*) Note : The method of topping up gearbox oil with an oil gauge remains unchanged.				
		B2CP3ACD	B2CP3ABC		

XANTIA - XM \quad RECOMMENDATIONS - PRECAUTIONS : AL 4 and 4 HP 20 AUTOMATIC GEARBOXES

Engines : LFY - RFV - RFN - XFZ - DHX

PROCEDURE BEFORE REPAIRS (continued)

When the ECU detects an erroneous or non-existent value on input or output :

- It writes the fault in memory.
- For each associated context, it writes the context of the oldest fault
in memory.
- It initiates a back-up mode strategy.

There are two types of back-up modes:

- The ECU makes replacement values available (relating to comfort, gear selection quality, loss of functions).
- Access to emergency programme (only 3rd ratio and reverse are available).

Note : 4 HP 20 : A snatching may be felt when changing: P/R - N/R - N/D.

Reading the fault codes.

- Read the fault codes.

No fault codes present :
Carry out a measure of parameters.

Anomalies present :

- YES : Carry out the necessary repairs.
- NO : Read the fault codes - engine ECU
- Carry out a road test.

Following an initialisation of the ECU, for a certain period of time there may be an inconsistent gear selection quality (while ECU parameters are adapted to the gearbox).
To achieve a consistent standard, it will be necessary to carry out a road test taking in frequent gear changes (auto-adaptive laws).

RECOMMENDATIONS - PRECAUTIONS : 4 HP 20 AUTOMATIC GEARBOX	XANTIA- XM
Engine : XFZ	
ECU : Downloading, Configuration, Initialisation (Pedal).	
Downloading (4 HP 20) Updating the gearbox ECU by downloading : - Follow the procedure using the diagnostic equipment	
The operation of downloading is used to update the automatic gearbox ECU or to adapt it to the engine ECU. After downloading, carry out the following :	

Following the diagnostic tool procedure.

- A reinitialisation of the auto adaptor (4 HP 20).
- A road test (4 HP 20).

IMPERATIVE : Every update of the automatic gearbox ECU must be accompanied by an update of the engine ECU.

XANTIA - XM - SYNERGIE
 RECOMMENDATIONS - PRECAUTIONS : AL 4 AUTOMATIC GEARBOX
 ECU : Downloading

Updating the gearbox ECU by downloading :

- SFollow the procedure using the diagnostic tool.

The downloading operation enables the automatic gearbox to be updated, or adapted to an evolution of the engine ECU.
Before commencing the downloading, take the value of the oil usage counter present in the automatic gearbox ECU.
After the downloading operation, carry out the following:
A clearing of faults.
A pedal initialisation.
An initialisation of the auto-adaptives.
A recording of the value of the oil usage counter previously read.
A road test.
ESSENTIAL : Every update of the automatic gearbox ECU should be accompanied by an update of the engine ECU.

Updating the value of the oil usage counter.

Using PROXIA

Access to reading and recording of the oil counter is via the menu : «Configuration (integrated circuit button) / Oil counter».
Adjustment of the oil counter value is done in incremental steps of 2750 units.

Using LEXIA or ELIT.

Access to reading and recording of the oil counter is via the menu : «Oil counter».
Adjustment of the oil counter value is done by entering directly the 5 figures of the oil counter.

IMPERATIVE : For a certain period of time, while the ECU parameters are adapted to the gearbox, there may be an inconsistent gear selection quality. To achieve a consistent standard, it will be necessary to carry out a road test taking in frequent gear changes (auto-adaptive laws).

XANTIA SUSPENSION			
Height control : Saloon and Estate		\varnothing Anti-roll bars (mm)	
	Engines	Saloons	
		Front	Rear
	$\begin{aligned} & \text { BFZ - LFX - LFY } \\ & \text { RFV - DHX - RHY } \end{aligned}$	22	21
	RGX - RFN - XFZ - P8C - RHZ	22	22
	ACTIVA	28	25
	Engines	Estate	
		Front	Rear
	All Types	23	23
	(1) Automatic control clamp Tighten to $\mathbf{1 , 5 m}$.daN Grease G6 (TOTAL MULTIS)		
B3BP12ZD			

AXLE GEOMETRY

General conditions required for adjustment

Check the tyre pressures.

- Parking brake released.
- Manually set the height to the «NORMAL DRIVING» position.
- Engine running.

Note : After each body movement, and before each measurement : Move the vehicle backwards and forwards slightly by pushing the road wheel by hand.

Front height		Rear height	
B3BP130C	H1 = R1-L1	H2 = R2 + L2	
	H1: Front height (+ 7. $\mathbf{- 1 0 ~ m m}$) R1: Wheel radius in mm . L1: Theoretical dimension between the front subframe contact surface and the wheel axis	H2: Rear height (+7. $\mathbf{- 1 0 ~ m m}$) R2: Wheel radius in mm . L2: heoretical dimension between the bearing surface of the bodyshell and the wheel axis	
	Example : front height - Measure dimension R1 (centre of the wheel) on the vehicle. - Subtract L1 from R1 (See the table on page 223) and calculate H1. - Measure H1 on the vehicle. - The measured dimension H 1 should be the same as the calculated dimension H 1 (+ 7. - $\mathbf{1 0} \mathbf{~ m m}$) - Adjust the heights if necessary.		
			$\frac{/}{9045-\mathrm{T}}$
			B3BP131C

SUSPENSION (continued)					XM
	\varnothing Anti-roll bars (mm)			Front suspension units	
Engines	Saloons			Saloons and Estate	
	Front	Rear	Engines	\varnothing piston rods	\varnothing pistons
RGX	23	22	RFV	22	
RFV	23	21	RGX		
XFZ - P8C - THY	24	22	XFZ	25	40
Ambulance (P8C)	24	22.5	P8C - THY		
Engines	Estate				
All Types	Front	Rear			
	25	22.5			

Rear suspension cylinders
Saloons: Ø 37 mm .
Estate: $\varnothing \mathbf{4 2 . 5} \mathbf{~ m m}$

SUSPENSION				SYNERGIE
			All Types	
Shock absorber (ref.)		Ft	F 23	
		Rr	F 254	
Anti-roll bar Ø (mm)		Ft	25	
		Rr	30	
Spring (ref.)	Withoutair-con	Ft	1 grey+ 1 yellow	
	With air-con		2 grey+ 1 yellow	
		Rr	3 yellow	

BRAKE SPECIFICATIONS											XANTIA	
			2.0i CT	3.0i V6	1.9 TD	2.0 HDi	1.6i	1.8i	1.8i16V	1.9D	2.0HDi	.0i16V
					Auto.							
Ft	$\begin{gathered} \varnothing \\ \mathrm{mm} \end{gathered}$	Caliper/piston makes	$\begin{gathered} \text { BENDIX SVG-Z0 } \\ 60 \end{gathered}$				$\begin{gathered} \text { BENDIX } 5 \mathrm{G} \\ 54 \end{gathered}$					
		Disc	288				266					283
	Disc thickness		28				20.4					22
	Minimum disc thickness		26				18.4					20
	Brake pad grade		FERF 949									
Rr	\varnothing	Caliper/piston makes	$\begin{gathered} \hline \text { CITROEN } \\ 33 \end{gathered}$									
	mm	Disc	224									
	Disc thickness		9									
	Minimum disc thickness		7									
	Brake pad grade		FERF 949									
(1) With active anti-roll												

BRAKES			XANTIA
Front		Rear	
Tightening torques (m.daN)			
- Stud (1) = 5 - Caliper fixing (2) $=\mathbf{1 0 . 5}$	- Fixing to bodyshell (4) $=1.5$ - Control valve fixing (5) $=\mathbf{2}$	- Caliper fixing (3) $=4.7$	
B3FPOOQC	B3FP00TC		B3FP00SC

HANDBRAKE (continued)		XANTIA
Automatic wear adjustment. Engine running. Handbrake in the fully released position. Press the brake pedal 10 times with an effort of $\mathbf{2 0 ~ m}$ daN. Release the brake pedal. Adjusting the parking brake sheaths. NOTE : Before carrying out this operation, ensure that the parking brake sheaths are properly bedded-in. Operate the handbrake lever 10 times with an effort of 40 m daN. - Set the steering in the straight-ahead position. - Put the handbrake in the fully released position. - Carry out the following operations on each	Start adjusting with the right side. Pull the end-piece (3) of the parking brake cable by hand. Slightly tighten, by hand, the nut (2) so that it is against the brake caliper (the end-piece (3) should be in contact with the lever (4). Mark one face of the nut (2) using a felt-tip marker pen. RHD vehicles up to RPO N ${ }^{\circ} 6375$: Slacken the nut (2) by 3 turns. LHD vehicles all types, RHD vehicles from RPO $\mathbf{N}^{\circ} 6376$: Slacken the nut (2) by $\mathbf{1 / 2}$ turn. Tighten the lock nut to 3 m .daN. Dimension «L» should be the same on both sides to within 1.5 mm (correct balance of the parking brake equaliser). NOTE : With the brake lever at rest, the levers	
side of the vehicle : - Slacken the lock nut (1). - Put the lock nut (1) against its stop at «a». - Slacken the nut (2).	(4) must not be pulled by the cables, whatever the steering lock angle and the vehicle height.	

XANTIA

BLEEDING THE BRAKES

- Bleed the brakes with the suspension in the high position, after having operated the suspension as follows..

Position : LOW \rightarrow HIGH \rightarrow LOW \rightarrow HIGH.

- Jack up the vehicle with the road wheels hanging free.
- Remove the wheels.

XANTIA fitted with ABS.

- The circuit bleeding operation can be made easier by activating the hydraulic valve block using the LEXIA or PROXIA diagnostic stations or the ELIT test unit.
- Front left.

Bleed the brakes in the following order : - Rear right.
 - Rear left.
 - Front right.

- Engine running.
- Connect the bleed screw to a receptacle using a transparent pipe.
- Press the brake pedal lightly, or load the pedal with a weight of 5 to $6 \mathbf{k g}$.
- Slacken the bleed screw, let the fluid escape until it is free of air bubbles.
- Retighten the screw.
- Top up the LHM reservoir

			BRAKE SPECIFICATIONS (continued)				XM	
			Petrol				Diesel	
			$\begin{aligned} & 2.0 \text { i Turbo CT } \\ & 2.0 \text { i } 16 \mathrm{~V} \end{aligned}$		3.0 i V6		2.1 TD	2.5 TD
			Saloon	Estate	Saloon	Estate	Saloon	
Ft	\varnothing	Caliper/piston makes	BENDIX Série S5G 57		$\begin{aligned} & \text { BENDIX Série } 5 Z O \\ & 60 \end{aligned}$		BENDIX Série S5G 57	$\begin{gathered} \text { BENDIX Série } 5 Z O \\ 60 \end{gathered}$
	mm	Disc	283		288		283	288
	Disc thickness		26		28		26	28
	Minimum disc thickness		24		26		24	26
	Brake pad grade		ABEX-FERF 949					
Rr	$\begin{gathered} \varnothing \\ \mathrm{mm} \end{gathered}$	Caliper/piston makes	$\begin{gathered} \text { CITROEN } \\ 33 \end{gathered}$		$\begin{gathered} \text { CITROEN } \\ 33 \end{gathered}$	$\begin{gathered} \text { CITROEN } \\ 40 \end{gathered}$	$\begin{gathered} \hline \text { CITROEN } \\ 33 \end{gathered}$	$\begin{gathered} \text { CITROEN } \\ 40 \end{gathered}$
		Disc	224		232	251	224	251
	Disc thickness		9		9	12	9	12
	Minimum disc thickness				7	10	7	10
	Brake pad grade		ABEX-FERF 949					

HANDBRAKE

- Apply the main brake pedal so that the brake pads are in contact with the brake discs, release the pressure.
- Set the handle (5) to the locked position.
- Press the pedal (6) to the 4th notch of the quadrant.
- Turn the nuts (2) to obtain an equaliser (3) balance to within 1.5 mm .
- Unlock the handle (5), the pedal should return to its rest position.
- The levers (1), should not be pulled by the cables, whatever the steering angle and height of the vehicle.
- Tighten the lock nuts to 2 m.daN.
- Apply the parking brake several times, ensuring it returns to its rest position.

All Types

- Bleed the brakes with the suspension in the high position, after having operated the suspension as follows.

Position: LOW \rightarrow HIGH \rightarrow LOW \rightarrow HIGH.

- Bleed the brakes in the following order : - Rear right.
- Rear left.
- Front right.
- Front left.
- Engine running.
- Connect the bleed screw to a receptacle using a transparent pipe.
- Press the brake pedal lightly, or load the pedal with a weight of 5 to $\mathbf{6} \mathbf{~ k g}$.
- Slacken the bleed screw, let the fluid escape until it is free of air bubbles.
- Tighten the screw.
- Top up the LHM reservoir.

XM equipped with ABS.

- The circuit bleeding operation can be made easier by activating the hydraulic valve block using the LEXIA or PROXIA stations or ELIT test unit.

SYNERGIE			BRAKE SPECIFICATIONS	
			20 HDi	2.0116 V
Ft	$\begin{gathered} \varnothing \\ \mathrm{mm} \end{gathered}$	Master cylinder	23.8	
		Master-vac	279	$203+230$ (Tandem)
		Caliper/piston makes	$\underset{57}{\text { GIRLING C57 }}$	
		Disc	281 (Ventilated)	
	Disc thickness		26	
	Minimum disc thickness		24	
	Brake pad grade		GALFER 3314	
Rr	$\begin{gathered} \varnothing \\ \mathrm{mm} \end{gathered}$	Cylinder or caliper	20.6	36
		Drum	255	
		Disc		295
	x./ min. thickness			10/8
	Make		BENDIX FN 36	
	Brake lining grade		DON 7124	GALFER 36212
	Compensator cut-off in Bars		Front 65 - Rear brake 65	Front brake 85 - Rear brake 85

- Slacken the cables using the nut (1).
- Remove the blanking plug from hole \mathbf{A}.
- Position hole A opposite the toothed wheel (adjusting mechanism).
- Turn the toothed wheel using a flat screwdriver until the disc locks.
- LH side upwards.
- RH side downwards.
- Unlock the disc by turning in the opposite direction by 6 notches.
- Position the blade \mathbf{B} of the blanking plug perpendicular to the line passing through the centre of the disc and the centre of the hole. Tighten the nut (1) to obtain a handbrake lever travel of 4 to 5 notches.
- Tighten the lock nut (2).

ALL TYPES		DE-PRESSURISING THE SUSPENSION CIRCUITS	
		Carry out the following operations	Consequences
	Vehicle without hydractive suspension (Without SC.MAC valve)		
1	Height co	set to «LOW» position.	The suspension spheres are de-pressurised, wait for the vehicle to lower fully.
2	Unscrew the	pressure regulator release screw by 1 turn	The main accumulator is de-pressurised.
	Vehicle without hydractive suspension in running order (With SC.MAC valve)		
1	Start the engine.		Open the SC.MAC valves.
2	Height control set to «LOW» position if the vehicle is on stands : raise the wheel(s) concerned.		The suspension spheres + SC.MAC accumulator are de-pressurised.
3	Unscrew the pressure regulator release screw by 1 turn		The main accumulator is de-pressurised
	Vehicle with hydractive suspension in running order (With or without SC.MAC valve)		
1	Start the e		The electrovalves of the hydractive regulators are energised. Open the SC.MAC valves.

DE-PRESSURISING THE SUSPENSION CIRCUITS (continued)			ALL TYPES
2	Carry out the following operations	Consequences	
3	Height control set to «LOW» position if the vehicle is on stands : raise the wheel(s) concerned.	The suspension spheres + hydractive regulator accumulators +SC.MAC regulator are de-pressurised.	
Unscrew the pressure regulator release screw by 1 turn	The main accumulator is de-pressurised.		
1	Unscrew the pressure regulator release screw by 1 turn	The main accumulator is de-pressurised.	
2	Height control set to «LOW» position.	The SC.MAC accumulator is de-pressurised.	
3	Uncouple the pressure regulator outlet pipe. Couple the outlet pipe with the pump 4135-T + union(s) or 4034-T + union (S) and (0) from tool kit 4146-T.	The electrovalves of the hydractive regulators are energised.	
4	Switch on the ignition.		

	TYPES	DE-PRESSURISING THE SUSPENSION CIRCUITS (continued)	
		Carry out the following operations	Consequences
5	Establish raise the	pressure of $\mathbf{1 5 0}$ to $\mathbf{1 8 0}$ Bars if the vehicle is on stands el(s) concerned.	The suspension spheres + hydractive regulator accumulators are de-pressurised.
6	Open the tools.	ed screw of the pump 4135-T or 4034-T, remove the	The supply circuit is de-pressurised.
Vehicle with SC.CAR, Citroën Active Roll Control, in running order			
1	Start the engine		The electrovalves of the hydractive regulators are energised, and the SC.MAC valves are opened.
2	Height control set to «LOW» position.		The suspension spheres + hydractive regulator accumulators + SC.MAC regulator are de-pressurised.
3	Stop the engine.		
4	Unscrew the pressure regulator release screw by 1 turn.		The main accumulator is de-pressurised.
5	Open the SC.CAR regulator bleed screw.		The SC.CAR regulator accumulator is de-pressurised.

DE-PRESSURISING THE SUSPENSION CIRCUITS (continued)		
	Carry out the following operations	Consequences
6	Activate $\mathbf{4}$ to 5 times alternately the two SC.CAR corrector link rods.	The SC.CAR accumulator is de-pressurised.
	Vehicle with SC.CAR, Citroën Active Roll Control, not in running order	
1	Unscrew the pressure regulator release screw by 1 turn.	The main accumulator is de-pressurised.
2	Height control set to «LOW» position.	The SC.MAC accumulator is de-pressurised.
3	Open the SC.CAR regulator bleed screw.	The SC.CAR regulator accumulator is de-pressurised.
4	Activate $\mathbf{4}$ to 5 times alternately the two SC.CAR corrector link rods.	The SC.CAR accumulator is de-pressurised.
5	Uncouple the SC.CAR accumulator supply pipe, plug the pipe using the unions 4146-T (M) and (V).	
6	Uncouple the pressure regulator outlet pipe, couple the pipe to the pump 4135-T + 4146-T.S or 4034-T + 4136-T (S) and (O).	

ALL TYPES		DE-PRESSURISING THE SUSPENSION CIRCUITS (continued)	
7	Carry out the following operations	Consequences	
7	Switch on the ignition.	The electrovalves of the hydractive regulators are energised.	
8	Establish a pressure of $\mathbf{1 5 0}$ to $\mathbf{1 8 0}$ Bars if the vehicle is on stands : raise the wheel(s) concerned.	The suspension spheres + hydractive regulator accumulators are de-pressurised.	
9	Open the bleed screw of the pump 4135-T or 4034-T, remove the tools.	The supply circuit is de-pressurised.	

DE-PRESSURISING THE SUSPENSION CIRCUITS (continued)			ALL TYPES
SPECIFIC CASES The suspension can be de-pressurised on each axle individually. ESSENTIAL : The height corrector must be operated in the «LOW» position.			
	Carry out the following operations	Consequences	
	Vehicle with or without hydractive suspension - Front axle (With SC.MAC valves)		
1	Unscrew the pressure regulator release screw by 1 turn.	The main accumulator is de-pressurised.	
2	Uncouple the pressure inlet pipe (1) from the height corrector. Connect the pump 4135-T or 4034-T - 4146-T.O.		B3BP136C
3	Hydractive Vehicle : Switch on the ignition.	The electrovalves of the hydractive regulato	nergised.

ALL TYPES		DE-PRESSURISING THE SUSPENSION CIRCUITS (continued)		

DE-PRESSURISING THE SUSPENSION CIRCUITS (continued)			ALL TYPES
	Carry out the following operations	Consequences	
3	Vehicle with hydractive suspension : switch on the ignition	The electrovalves of the hydractive regulators are energised.	
4	Establish a pressure ($\mathbf{8 0}$ to $\mathbf{1 8 0}$ Bars) to control the slide valves of the SC.MAC valve and hydractive regulator.	The suspension spheres + hydractive regulator accumulators + SC.MAC accumulator (front suspension settling) are de-pressurised.	
5	Open the bleed screw of the pump 4135-T or 4034-T, remove the tools.	The supply circuit is de-pressurised.	
	Vehicle with hydractive suspension (without SC.MAC valve) Work on the hydractive regulator which controls the axle to be repaired.		
1	Unscrew the pressure regulator release screw by 1 turn.	The main accumulator is de-pressurised.	
2	Uncouple the pipe (3) of the hydractive regulator. Couple the pump 4135-T or 4034-T + 4146-T.O.		B3BP139C

ALL TYPES		DE-PRESSURISING THE SUSPENSION CIRCUITS (continued)	
	Carry out the following operations	Consequences	
3	Switch on the ignition.	The electrovalves of the hydractive regulators are energised.	
4	Establish a pressure (80 to $\mathbf{1 8 0}$ Bars) to control the slide valves of the hydractive regulator.	The suspension spheres + hydractive regulator accumulators (suspension settling) are de-pressurised.	
5	Open the bleed screw of the pump 4135-T or 4034-T, remove the tools.	The supply circuit is de-pressurised.	
$\mathbf{1}$	Unscrew the pressure regulator release screw by $\mathbf{1}$ turn.	The main accumulator is de-pressurised	
2	Height control set to «LOW» position.	The SC.MAC accumulator is de-pressurised.	
3	Open the SC.CAR regulator bleed screw.	The SC.CAR regulator accumulator is de-pressurised.	
4	Activate $\mathbf{4}$ to $\mathbf{5}$ times alternately the two SC.CAR corrector link rods.	The SC.CAR accumulator is de-pressurised	

DE-PRESSURISING THE SUSPENSION CIRCUITS (continued)			ALL TYPES
	Carry out the following operations	Consequences	
5	Uncouple the SC.CAR accumulator supply pipe, plug the pipe with the unions 4146-T.M and V.		
	Front suspension : special case (without SC.MAC valve) (See page 242)	Rear suspsion : special case (without SC.MAC valve) (See page 240)	

FILLING AND BLEEDING THE SUSPENSION CIRCUITS (continued)

	Carry out the following operations	
1	LHM fluid level to the max. mark.	
2	Loosen the pressure regulator release screw.	
3	Start the engine.	Consequences
4	Tighten and slacken the pressure regulator release screw several times, then retighten it.	Priming of the high pressure (HP) pump.
5	Height control set to «HIGH» position.	Wait for the vehicle to rise fully.
6	Top up the level : engine running, vehicle in the high position.	LHM fluid topped up.

XANTIA	PNEUMATIC UNITS - DAMPERS				
	NON-HYDRACTIVE SUSPENSION				
Front suspension sphere (2)					
Vehicle type	Pneumatic unit nos.		Volume (cc)	Pressure (bars)	Damper hole diameter mm
All Types	96178589	D	400	55 (+5 ; - 20)	1.5
	96194444	U			
	96199318	M	450	50	
Rear suspension sphere (3)					
Vehicle type	Pneumatic unit nos.		Volume (cc)	Pressure (bars)	Damper hole diameter mm
Saloon	96238977	D	400	$30(+5$; - 10)	1.2
	96239023	U			
Estate	96239029	D		$40(+5$; - 10)	1.25
	96239028	U			
SC.MAC accumulator (6) NOTE : This pneumatic unit is located at the rear of the vehicle.					
Vehicle type	Pneumatic unit nos.		Volume (cc)	Pressure (bars)	Damper
All Types	96145672	D	400	50 (+5 ; - 20)	None
	96198613	U			
SC.MAC : Citroen Anti-Sink					

PNEUMATIC UNITS - DAMPERS							XANTIA
	HYDRACTIVE SUSPENSION						
Front suspension sphere (2)							
Vehicle type	Pneumatic unit nos.		Volume (cc)		Pressure (bars)	Damper hole diameter mm	
All Types	96238949	M	450		45	0.7	
Rear suspension sphere (3)							
Vehicle type	Pneumatic unit nos.		Volume (cc)		Pressure (bars)	Damper hole diameter mm	
Saloon	96238951	D	400		$30(+5$; - 10)	0.6	
	96238950	U					
Estate	96239027	D	500		$40(+5 ;-10)$	0.8	
	96239026	U	400				
Hydractive regulator accumulator. NOTE: (*) The dampers are incorporated in the hydractive regulator.							
Vehicle	Hydractive regulator (Axle)		Pneumatic unit nos.		Volume (cc)	Pressure (bars)	* Damper hole diameter (mm)
All types (except V6)	Front (4)		96181131	M	450	75	1.1
V6			96281798			70	1.2
All Types	Rear (5)		96045530	U	400	$50(+5 ;-20)$	1.3

PNEUMATIC UNITS - DAMPERS						XANTIA
	SUSPENSION SC.CAR (*)					
Hydractive regulator accumulator. NOTE: (*) The dampers are incorporated in the hydractive regulator.						
Hydractive regulator	Pneumatic unit nos.	Volume (cc)		Pressure (bars)	Damper hole diameter mm	
Vehicle ACTIVA	Hydractive regulator (Axle)	Pneumatic unit nos.		Volume (cm ${ }^{3}$)	Pressure (bars)	* Damper hole diameter (mm)
All Types (Except V6)	Front (4)	96181131	M	450	75	1.1
V6 Manual gearbox		96281798			70	1.2
All Types	Rear (5)	96221207	U	400	$55(+5 ;-10)$	1.1
Additional accumulator						
Type	Pneumatic unit nos.		Volume (cc)		Pressure (bars)	
SC.MAC accumulator (6)	96198613	D	400		50 (+5; - 20)	
SC.CAR accumulator (7)	96212198	U			62 (+5 ; - 32)	
SC.CAR accumulator regulator						
Regulator	Pneumatic unit nos.		Volume (cc)		Pressure (bars)	
SC.CAR (8)	96208710	U	400		30 (+5; - 10)	

PNEUMATIC UNITS - DAMPERS					XM
NON-HYDRACTIVE SUSPENSION					
Front suspension sphere (2)					
Vehicle type	Pneumatic unit nos.		Volume (cc)	Pressure (bars)	Damper hole diameter mm
Saloon and Estate (Except 2.1 DT)	96051819	D	400	70 (+5; - 25)	1.65
	96222864	M	450	65	
Estate All Types (Except 2.1TD)	96069918	D	400	70 (+5 ; - 25)	1.4
	96212110	M	450	65	
Saloon and Estate$2.1 \mathrm{TD}$	96222866	D	400	70 (+5 ; - 25)	1.65
	96222865	M	450	65	
Rear suspension sphere (3)					
Vehicle type	Pneumatic unit nos.		Volume (cc)	Pressure (bars)	Damper hole diameter mm
Saloon All Types	96222874	D	400	40 (+5 ; - 15)	1.25
	96222873	U			
Estate All Types	96120324	U	500		1.5
SC.MAC accumulator (6) NOTE : This pneumatic unit is located at the rear of the vehicle..					
Vehicle type	Pneumatic unit nos.		Volume (cc)	Pressure (bars)	Damper
Saloon and Estate	96198613	U	400	50 (+5 ; - 20)	None

PNEUMATIC UNITS - DAMPERS					XM
HYDRACTIVE SUSPENSION (continued)					
Hydractive regulator accumulator. NOTE : The dampers are incorporated in the hydractive regulator.					
Vehicle type	Pneumatic unit nos.		Volume (cc)	Pressure (bars)	Damper hole diameter mm
Saloon/Estate 2.0 i 16 V	96181131	M	450	75	1.25
Saloon/Estate (4) (Except 2.0 i 16 V)	96281798			70	
Saloon (5)	96045530	U	400	$50(+5 ;-20)$	
Estate (5)	96468115		500	40 (+5 ; - 15)	
SC.MAC accumulator (6) NOTE : This pneumatic unit is located at the rear of the vehicle					
Vehicle type	Pneumatic unit nos.		Volume (cc)	Pressure (bars)	Damper
$\begin{gathered} \text { 2.0 i }-2.5 \mathrm{TD}-2.1 \mathrm{TD} \\ \text { 2.0 i Turbo }-\mathrm{CT} \end{gathered}$	96198613	U	400	50 (+5 ; - 20)	None

XANTIA		STARTER MOTORS		
Vehicles / models		Manufacturer and Ref.	Class	Climate
XANTIA	$\begin{aligned} & 1.6 \mathrm{i} / 1.8 \mathrm{i} \\ & 1.8 \mathrm{i} 16 \mathrm{v} \end{aligned}$	VALEO D6 RA 661	3	H,T
		BOSCH 107019		C
		BOSCH 1108084	4	VC
	$\begin{gathered} 1.8 \mathrm{i} 16 \mathrm{v} \text { (Auto.) } \\ 2.0 \mathrm{i} 16 \mathrm{v} \end{gathered}$	VALEO D6 RA 661	3	H,T
		BOSCH 107019		
		BOSCH 1108084	4	C,VC
	3.0i V6	VALEO D7 R17		H,T,C,VC
	$\begin{aligned} & \text { 1.9TD } \\ & \text { 2.0i HDi } \end{aligned}$	VALEO D7 R8	5	H,T
		MELCO M001T80082		
		VALEO D7 R12	6	c,vc

CLIMATE : T (Temperate), H (Hot), C (Cold), VC (Very Cold)

STARTER MOTORS				XM
Vehicles / models		Manufacturer and Ref.	Class	Climate
XM	$\begin{gathered} 2.0 \mathrm{i} 16 \mathrm{v} \\ \text { 2.0i Turbo CT (Auto.) } \end{gathered}$	VALEO D6 RA 661	3	H, T
		BOSCH 107019		
		BOSCH 1108084	4	C,VC
		VALEO D6 RA 661	3	H,T
	2.0i Turbo CT	BOSCH 107019		C
		BOSCH 1108084		VC
	3.0i V6	VALEO D7 R17		H,T,C,VC
		VALEO D7 R8	5	H, T
	2.1 TD	MELCO M001T80082		
		VALEO D7 R12	6	C,VC
	2.5 TD	MELCO M002T84771		H,T,C,VC

[^1]

ALTERNATORS							ALL TYPES
		Classes and types					
Engine	Gbox.		Without air con.	Climate		With air con.	Climate
1.6i	M	7	VALEO A11 VI 57	H	9	VALEO A13 VI 191	H
			BOSCH A120310104			MELCO A003TA0591	
		8	MELCO A002TA0291	T,C	8	MELCO A002TA0291	T,C,VC
			VALEO A13 VI 189			VALEO A13 VI 189	
		9	VALEO A13 VI 191	VC			
			MELCO A003TA0591				
$\begin{gathered} 1.8 i \\ 2.0 i 16 v \end{gathered}$	M	7	BOSCH A120411525	H	9	VALEO A13 VI 101+	H,T,C
		8	BOSCH A120411523	T,C		MELCO A002TA2091	VC
			MELCO A002TA1991				
			VALEO A13 VI 102				
		9	VALEO A13 VI 101+	VC			
			MELCO A002TA2091				

CLIMATE : T (Temperate), H (Hot), C (Cold), VC (Very Cold)

ALL TYPES	ALTERNATORS						
		Classes and types					
Engine	Gbox.		Without air con.	Climate		With air con.	Climate
1.8i 16v	M	7	BOSCH A120411525	H	9	VALEO A13 VI 101+	H,TVC
			BOSCH A120411523	T,C		MELCO A002TA2091	
		8	MELCO A002TA1991		8	BOSCH A120411523	C
			VALEO A13 VI 102			MELCO A002TA1991	
		9	VALEO A13 VI 101+	VC		VALEO A13 VI 102	
			MELCO A002TA2091				
$\begin{aligned} & 1.8 \mathrm{i} 16 \mathrm{v} \\ & 2.0 \mathrm{i} 16 \mathrm{v} \end{aligned}$	A	9	VALEO A13 VI 101+	T	12	VALEO A14 VI 14	H
			MELCO A002TA2091	C,Vc	9	VALEO A13 VI 101+	T,C,VC
		8	BOSCH A120411523	H		MELCO A002TA2091	
			MELCO A002TA1991				
			VALEO A13 VI 102				

CLIMATE : T (Temperate), H (Hot), C (Cold), VC (Very Cold)

ALL TYPES	ALTERNATORS						
		Classes and types					
Engine	Gbox.		Without air con.	Climate		With air con.	Climate
2.0 HDi	M	15	VALEO A14 VI 27+	H,T,C,VC	15	VALEO A14 VI 27+	$\begin{aligned} & \mathrm{H}, \mathrm{~T}, \mathrm{C} \\ & \mathrm{VC} \end{aligned}$
			BOSCH A12051611			BOSCH A12051611	
			MELCO A004TF0091			MELCO A004TF0091	

CLIMATE : \mathbf{T} (Temperate), $\mathbf{H}($ Hot), \mathbf{C} (Cold), VC (Very Cold)

ALTERNATORS							ALL TYPES
		Classes and types					
Engine	Gbox.		Without air con.	Climate		With air con.	Climate
2.0i Turbo CT	M	9	VALEO A13 VI 191	H,	15	VALEO A14 VI 15+	H
			MELCO A003TA0591	C,VC	12	MELCO A004TA0091	T
					9	VALEO A13 VI 191	C,VC
						MELCO A003TA0591	
	A		VALEO A13 VI 191	H,T	15	VALEO A14 VI 15+	H, ${ }^{\text {, }}$
			MELCO A003TA0591	C,VC	9	VALEO A13 VI 191	C,VC
		9				MELCO A003TA0591	
2.0i 16v	M	9	VALEO A13 VI 101+	H,	12	VALEO A14 VI 14	H, ${ }^{\text {r }}$
			MELCO A002TA2091	C,VC	9	VALEO A13 VI 101+	c, vc
						MELCO A002TA2091	
	A	9	VALEO A13 VI 101+	$\begin{aligned} & \mathrm{H}, \mathrm{~T} \\ & \mathrm{C}, \mathrm{VC} \end{aligned}$	15	VALEO A14 VI 15+	H,T
			MELCO A002TA2091		9	VALEO A13 VI 101+	C,VC
						MELCO A002TA2091	
3.0i V6	M/A				15	VALEO A14 VI 25+	$\begin{gathered} \mathrm{H}, \mathrm{~T}, \mathrm{C} \\ \mathrm{VC} \end{gathered}$
CLIMATE : T (Temperate), H (Hot), C (Cold), VC (Very Cold)							
277							

ALL TYPES	ALTERNATORS						
		Classes and types					
Engine	Gbox.		Without air con.	Climate		With air con.	Climate
2.1 TD	M	12	VALEO A14 VI 13	H,T	15	VALEO A14 VI 16+	T
				C,VC	12	VALEO A14 VI 13	C,VC
	A	12	VALEO A14 VI 13	H,T	12	VALEO A14 VI 13	T
				C, VC			C, vc
2.5 TD	M	12	VALEO A14 VI 13	H,T	12	VALEO A14 VI 13	T
				C,VC			C,VC

CLIMATE : T (Temperate), H (Hot), C (Cold), VC (Very Cold)

CLIMATE : T (Temperate), H (Hot), C (Cold), VC (Very Cold)

CHECKING THE ALTERNATOR OUTPUT

Connect as shown in the diagram opposite, using an ammeter (A), a voltmeter (V) and a rheostat (R), or a Voltmeter/Ammeter/Rheostat combination.
Adjust the engine speed (table opposite) and rheostat charge according to the vehicle's equipment specification in order to obtain $U=13.5 \mathrm{~V}$.

Reminder : The excitation energising current will flow through the warning lamp - check that the warning lamp comes on when the ignition is switched on. It must go out when the engine has started (accelerate slightly).

CHECKING THE VOLTAGE REGULATOR

Set the rheostat to zero and disconnect all the electrical consumers.Display 5000 alternator rpm. If \mathbf{U} alternator is $>14.7 \mathrm{~V}$, the regulator is faulty.

Note : These tests should be performed with the engine hot and the battery fully charged.

Output under 13.5 VCurrent (A) /
Alternator speed

Speed Class	2000 rpm	3000 rpm	4000 rpm
5	29 A	39 A	43 A
7	42 A	54 A	59 A
8	49 A	62 A	68 A
9	62 A	76 A	83 A
12	72 A	90 A	100 A
15	99 A	128 A	140 A

PRE-HEATING AND STARTING SYSTEMS				ALL TYPES
Vehicles / models		Pre-heater plugs	Pre-heater control unit	Pre / Post heating (pre-heating duration at $20^{\circ} \mathrm{C}$)
XANTIA	1.9TD	BERU 0100226186	BOSCH 0281003005	6s / 180s
		BOSCH 0250201039	VALEO 73507212	
	2.0 HDi	CHAMPION CH170	NAGARES 735068	Controlled by diesel injection ECU
		BOSCH 0250202032	CARTIER 960411-P	
XM	2.1TD	BERU 0100226186	VALEO 73506802	
		BOSCH 0250201039		
	2.5TD	BERU 0100226186	VALEO 73506802	
		BOSCH 0250201039		
SYNERGIE	2.0 Hdi	CHAMPION CH170	NAGARES 735068	
	2.0 16v HDi	BOSCH 0250202032	CARTIER 960411-P	

Preheater plug resistance : $0.4 \leq R \leq 0.6 \mathrm{~W}$

ALL TYPES		AIR CONDITIONING R 134 a (HFC)				
Vehicle	Engine	Date	Refrigerant refill$(\pm 25 \mathrm{gr})$	Compressor		
				Capacity	Oil quantity cc	Oil reference
				Variable		
XANTIA	XU All types	10/94 >	875 gr	SD 7 V 16	135	SP 10
	3.0 i V6	01/97 >	825 gr			
	XUD All types DW 10 All types (Except 2.1 TD)	02/96 >		DELPHI V5 (1)	265 ± 15	$\begin{gathered} \text { PLANETELF } \\ 488 \end{gathered}$
	2.1 TD	05/97 >	850 gr			
XM	XU All types	10/93 >	725 gr	SD 7 V 16	135	SP 10
	3.0 I V6	05/97 >	825 gr			
	XUD All types (Except 2.5 TD)	10/93 >	725 gr			
	2.5 TD	07/94 >	825 gr			
SYNERGIE	All types	06/94 >	$1000 \pm 50 \mathrm{gr}$			
(1) HARRISON Division						

REMINDER : Refilling the air conditioning system should be done through the LOW PRESSURE valve whenever possible.
NOTE : The diameters of the High Pressure and Low Pressure valves are different, to avoid mixing them up.
NOTE : For operations concerning draining, drying (empty), checking and recharging of a system: (refer to BRE 0290)
WARNING : For R 134.a quantities: (See table on page: 280)

ALL TYPES

SPECIAL FEATURES : AIR CONDITIONING SYSTEM (R 134.a)

Compressor lubricant.

ESSENTIAL: The compressor lubricant is extremely hygroscopic; always use FRESH oil.

Checking the compressor oil level.

There are three specific cases :

1) Repairs to a system without leaks.
2) Slow leak.
3) Fast leak.
4) Repairing a system without leaks.
a) Using draining/recovery equipment not fitted with an oil decanter.

- Drain the system as slowly as possible via the LOW PRESSURE valve, so as not to lose any oil.
- No more oil should be added when filling the system with R 134.a fluid.
b) Using draining/filling equipment fitted with an oil decanter.
- Drain the R 134.a fluid from the system in accordance with the instructions in the equipment handbook.
- Measure the amount of oil recovered.
- Add the same amount of NEW oil when filling the system with R 134.a fluid.

c) Replacing a compressor.

- Remove the old compressor, drain it and measure the oil quantity.
- Drain the new compressor (supplied full), so that the same amount of NEW oil is left in the compressor as was in the old compressor.
- No more oil should be added when filling the system with R 134.a fluid.

SPECIAL FEATURES : AIR CONDITIONING SYSTEM (R 134.a)	ALL TYPES
Checking the compressor oil level (continued)	

2) Slow leak.

- Slow leaks do not lead to oil loss, therefore the same procedure should be followed as if there was no leak at all.

3) Fast leak.

- This type of leak causes both oil loss as well as allowing air to enter the system.It is therefore necessary to :
- Replace the dehydrator.
- Drain as much oil as possible (when replacing the faulty component).

Either before or during filling of the system with R 134.a fluid, introduce $\mathbf{8 0} \mathbf{~ c c}$ of NEW oil into the system

ALL TYPES	SPECIAL FEATURES : AIR CONDITIONING SYSTEM (R 134.a)			
Presence of pollen filter				
Vehicle	Equipment	RPO No.	Presence of filter	Observations
AX-SAXO-ZX-BX-C15	All Types		NO	
XSARA XSARA PICASSO	Without aircon		YES (Behr)	Exc. driving school
	Base aircon		YES (Larger)	
	Regulated aircon		YES (Valeo)	
XANTIA I and II	Without aircon		NO	
	Regulated aircon		YES	Except Brazil
XM I and II	All Types		NO	
SYNERGIE	Without aircon		NO	
	Base aircon		NO	
	Automatic aircon	$\rightarrow 8148$	Do not fit	Ingress of water
		$8148 \rightarrow 8421$	YES (Behr)	Body modification
		$8421 \rightarrow$	YES if Exclusive	2 blowers
			NO if X and SX	1 blower
BERLINGO	Without aircon		NO (Valeo)	
	Base aircon		YES (Valeo)	
DISPATCH	All Types		NO	
	Base aircon		NO	
RELAY	Without aircon		NO	
	Base or double aircon		YES	

CHECKING THE EFFICIENCY OF THE AIR CONDITIONING SYSTEM	
CHECKING TEMPERATURES.	
TOOLS Two thermometers. Preliminary conditions. Position of the air conditioning controls : - Maximum cold air. - Air blower in maximum position. - Air distributor in "ventilation" position, with the dashboard vents open. - Air intake flap in "exterior air" position. Conditions and vehicle equipment. - Bonnet closed. - Doors and windows shut. - Ensure the vehicle is in a sheltered area (away from wind, sun, etc..).	CHECKS. If all these conditions are met, take the following action: - Start the engine, with the air conditioning off, and wait for the cooling fan first speed to cut in. - Operate the air conditioning and set the engine speed to $\mathbf{2 5 0 0} \mathbf{r p m}$. NOTE : If the exterior temperature reaches $40^{\circ} \mathrm{C}$, the engine speed will return to $\mathbf{2 0 0 0} \mathbf{~ r p m}$ in order to prevent the compressor from being cut off by the High Pressure safety device (Pressostat). After the air conditioning has been on for three minutes, measure : - the exterior temperature in the workshop, - the temperature of the air coming out of the central vents. Compare the two values using the table overleaf.

			using R	fluid (C	ssor wi	ariable cap	
Exterior temperature in ${ }^{\circ} \mathrm{C}$		40	35	30	25	20	15
Temperature in ${ }^{\circ}$ Cat the central vents	Vehicles						
	XANTIA	20 ± 3	16 ± 3	13 ± 3	11 ± 3	9 ± 3 (*)	8 ± 3
	XM	24 ± 3	18 ± 3	15 ± 3	13 ± 3	10 ± 3	8 ± 3
	SYNERGIE				12 ± 3	8 ± 3	

(*) At exterior temperature $\mathbf{2 0}{ }^{\circ} \mathbf{C}$, air temperature from the central vents is for second speed of the ventilator fan. If fan operates at first speed, then air temperature from the central vents becomes $8.4 \pm 3^{\circ} \mathbf{C}$.
NOTE : In general, the temperature of the air being blown from the central vents should be around $5^{\circ} \mathrm{C}$ to $8^{\circ} \mathrm{C}$.

CHECKING PRESSURES

TOOLS : 1 Charging station and 2 Thermometers.Observing the preliminary conditions, as well as vehicle equipment and checks (see page 287) :After the air conditioning has been operating for three minutes, record the following parameters :

- The temperature of the air coming out of the central vents See the table on page 290)
- The High Pressure.
- The Low Pressure.Compare the values recorded with the table below, or the graphs.

		Vehicle using R134.a fluid (Compressor with variable capacity)					
Exterior temperature in ${ }^{\circ} \mathrm{C}$		40	35	30	25	20	15
	Vehicles						
High pressure (Bars)		2				18 ± 3	14 ± 3
Low pressure (Bars)	XANTIA (1)	4 ± 3					4 ± 0.3
High pressure (Bars)	XANTIA (2)		21 ± 3		16 ± 3		
Low pressure (Bars)	XANTIA (2)		1.9 ± 3			. 4 ± 0.3	
High pressure (Bars)	XM		$24 \pm 0 ; 3$		19 ± 3	17 ± 3	15 ± 3
Low pressure (Bars)	XIM	4 ± 0.3	3 ± 0.3		2.5 ± 0.3		1.8 ± 0.3
High pressure (Bars)	SYNERGIE				16 ± 3		
Low pressure (Bars)							1.8 ± 0.3

(1) SANDEN Compressor (Petrol engines : all types) - (2) = HARRISON Compressor (Diesel engines : all types).

If the parameters recorded do not correspond to those in the above table, refer to the table (see page 290).

	Low pressuretoo low	Low pressurenormal	Low pressuretoo high
High pressuretoo low	- Insufficient fluid charge. - Constriction of the HP system. - Dirty pressure control valve.	- Cooling fan speed unsuitable. - Faulty compressor.	- Faulty pressure control valve. - Faulty compressor.
High pressurenormal	- Faulty compressor. - Dirty evaporator.	- Circuit normal.	- Cooling fan speed unsuitable
High pressuretoo high	- Faulty pressure control valve. - System blocked. - Water in the system.	- Presence of solid matter in the system. - Dirty condenser.	- Excessive fluid charge. - Dirty condenser.
- Faulty pressure control valve.			
- Cooling fan speed unsuitable.			

Checking the pressure at temperatures between $15^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$ for information only.
In general, the pressure should be approximately :

- for R134.a fluid, less than 2 Bars (Low pressure), and between 13 and 24 Bars (High pressure).

XANTIA All Types (Except XUD)

Key

$\mathbf{T}=$ Temperature (\mathbf{C}°) and High Pressure (Bars).
$\mathbf{P}=$ Low pressure (Bars).
$\mathrm{Te}=$ Exterior temperature (\mathbf{C}°).
HP = Pressure at compressor outlet (Bars).
$\mathrm{Ta}=$ Temperature of air blown from the central air vents (\mathbf{C}°).

BP = Pressure at compressor inlet (Bars).

[^0]: (*) = IF = Fiscal incentive.

[^1]: CLIMATE : T (Temperate), H (Hot), C (Cold), VC (Very Cold)

